FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of BS ISO 20998-2:2013 2013This part of ISO 20998 describes ultrasonic attenuation spectroscopy methods for determining the size distributions of a particulate phase dispersed in a liquid at dilute concentrations, where the ultrasonic attenuation spectrum is a linear function of the particle volume fraction. In this regime, particle–particle interactions are negligible. Colloids, dilute dispersions, and emulsions are within the scope of this part of ISO 20998. The typical particle size for such analysis ranges from 10 nm to 3 mm, although particles outside this range have also been successfully measured. For solid particles in suspension, size measurements can be made at concentrations typically ranging from 0,1 % volume fraction up to 5 % volume fraction, depending on the density contrast between the solid and liquid phases, the particle size, and the frequency range.
For emulsions, measurements may be made at much higher concentrations. These ultrasonic methods can be used to monitor dynamic changes in the size distribution. While it is possible to determine the particle size distribution from either the attenuation spectrum or the phase velocity spectrum, the use of attenuation data alone is recommended. The relative variation in phase velocity due to changing particle size is small compared to the mean velocity, so it is often difficult to determine the phase velocity with a high degree of accuracy, particularly at ambient temperature. Likewise, the combined use of attenuation and velocity spectra to determine the particle size is not recommended. The presence of measurement errors (i.e. “noise”) in the magnitude and phase spectra can increase the ill-posed nature of the problem and reduce the stability of the inversion.
About BSIBSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses. |
GROUPS
|