Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94624)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • BSI
    BS 1042-2.2:1983, ISO 7145:1982 Measurement of fluid flow in closed conduits. Velocity area methods - Method of measurement of velocity at one point of a conduit of circular cross section
    Edition: 1983
    $313.97
    / user per year

Description of BS 1042-2.2:1983 1983

This International Standard specifies a method for the determination of the volume rate of flow of a single phase fluid of a substantially constant density (Mach number ≤ 0,25) under steady fully developed flow conditions in a closed conduit of circular cross-section running full by measurement of the flow velocity in a single point.

The method provides for the possibility of placing the primary velocity measuring device either at the point where it is assumed the mean axial velocity prevails, i.e. at a distance of 0,242 R from the wall of the conduit (R being the radius of the conduit), or on the axis of the conduit.

If there are doubts about the symmetry of the flow it is advisable to use at least two measuring points located symmetrically on one circumference at the distance from the wall specified above.

If there are doubts about the symmetry of the flow it is advisable to use at least two measuring points located symmetrically on one circumference at the distance from the wall specified above.

1.2 Field of application

The method specified in this International Standard does not apply unless the following conditions have been fulfilled:

  1. The conduit shall have a straight length sufficiently long so that, in the measuring section, a distribution of velocities corresponding to fully developed turbulent flow can be observed (see 2.3.5).

    Hydraulic resistance coefficient λ of the conduit should not exceed 0,06.

  2. The flow must be turbulent and the Reynolds number, ReD' should exceed or be equal to the following values:
λ ≥ 0,03 0,025 0,02 0,01
ReD 104 3 × 104 105 106

When the velocity is measured on the conduit axis, the flow should be in fully rough turbulent regime (see 2.3.6). The Reynolds number, ReD, should then exceed or be equal to:

λ 0,06 0,05 0,04 0,03 0,025 0,02 0,01
ReD 3 × 104 5 × 104 105 3 × 105 5 × 105 106 5 × 107
  1. The experimental data on which this International Standard is based principally relate to conduits of diameter equal to or greater than 300 mm, but there is every reason to believe that the method can be applied to conduits of smaller diameter.
  2. In any point of the measuring cross-section, the angle between the direction of local velocity and the axis should not exceed 5°.

This condition can be verified either with the probe used for the measurements, if the design permits this, or with a different type of probe. It can be assumed that if the condition required is verified for a given flow q, then this condition is also met within the range q/3 to 3q.

1.3 Accuracy of the method

As a guide, it can be considered that determination of flow from velocity measurement at a single point, carried out in accordance with the requirements of this International Standard, will lead to an uncertainty (at a confidence level of 95 %) not exceeding ± 3 %. However, the uncertainty on the flow shall be calculated for each individual application of this International Standard depending on the type of primary device, on the method of use and if necessary, on the method of calibration as well as on the measuring conditions.



Gives a method of determining the volume rate of flow of a single phase fluid of a substantially constant density (Mach no ≤0.25) under steady fully developed flow conditions in a closed conduit of circular cross section running full, by measurement of the flow velocity at a single point.

About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X