Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6732)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    G189-07(2013) Standard Guide for Laboratory Simulation of Corrosion Under Insulation
    Edition: 2013
    $113.57
    Unlimited Users per year

Description of ASTM-G189 2013

ASTM G189 - 07(2013)

Standard Guide for Laboratory Simulation of Corrosion Under Insulation

Active Standard ASTM G189 | Developed by Subcommittee: G01.11

Book of Standards Volume: 03.02




ASTM G189

Significance and Use

5.1 The corrosion observed on steel and other materials under thermal insulation is of great concern for many industries including chemical processing, petroleum refining and electric power generation. In most cases, insulation is utilized on piping and vessels to maintain the temperatures of the operating systems for process stabilization and energy conservation. However, these situations can also provide the prerequisites for the occurrence of general or localized corrosion, or both, and in stainless steels, stress corrosion cracking. For example, combined with elevated temperatures, CUI can sometimes result in aqueous corrosion rates for steel that are greater than those found in conventional immersion tests conducted in either open or closed systems (see Fig. 1 ). 4 This figure shows actual CUI data determined in the field compared with the corrosion data from fully immersed corrosion coupons tests.

Note 1 The actual CUI corrosion rates can be in excess of the those obtain in conventional laboratory immersion exposures.

5.2 This guide provides a technical basis for laboratory simulation of many of the manifestations of CUI. This is an area where there has been a need for better simulation techniques, but until recently, has eluded many investigators. Much of the available experimental data is based on field and in-plant measurements of remaining wall thickness. Laboratory studies have generally been limited to simple immersion tests for the corrosivity of leachants from thermal insulation on corrosion coupons using techniques similar to those given in Practice G31 . The field and inplant tests give an indication of corrosion after the fact and can not be easily utilized for experimental purposes. The use of coupons in laboratory immersion tests can give a general indication of corrosion tendencies. However, in some cases, these procedures are useful in ranking insulative materials in terms of their tendencies to leach corrosive species. However, this immersion technique does not always present an accurate representation of the actual CUI tendencies experienced in the service due to differences in exposure geometry, temperature, cyclic temperatures, or wet/dry conditions in the plant and field environments.

5.3 One of the special aspects of the apparatus and methodologies contained herein are their capabilities to accommodate several aspects critical to successful simulation of the CUI exposure condition. These are: (1) an idealized annular geometry between piping and surrounding thermal insulation, (2) internal heating to produce a hot-wall surface on which CUI can be quantified, (3) introduction of ionic solutions into the annular cavity between the piping and thermal insulation, (4) control of the temperature to produce either isothermal or cyclic temperature conditions, and (5) control of the delivery of the control or solution to produce wet or wet-dry conditions. Other simpler methods can be used to run corrosion evaluations on specimens immersed in various solutions and leachants from thermal insulation. In some cases, these procedures may be acceptable for evaluation of the contribution of various factors on corrosion. However, they do not provide accommodation of the above mentioned factors that may be needed for CUI simulation.

5.4 With the CUI-Cell, the pipe material, insulation and environment can be selected for the desired simulation needed. Therefore, no single standard exposure condition can be defined. The guide is designed to assist in the laboratory simulation of (1) the influence of different insulation materials on CUI that, in some cases, may contain materials or additives, or both, that can accelerate corrosion, (2) the effect of applied or otherwise incorporated inhibitors or protective coatings on reducing the extent and severity of CUI. This guide provides information on CUI in a relatively short time (approximately 72 h) as well as providing a means of assessing variation of corrosion rate with time and environmental conditions.

1. Scope

1.1 This guide covers the simulation of corrosion under insulation (CUI), including both general and localized attack, on insulated specimens cut from pipe sections exposed to a corrosive environment usually at elevated temperature. It describes a CUI exposure apparatus (hereinafter referred to as a CUI-Cell), preparation of specimens, simulation procedures for isothermal or cyclic temperature, or both, and wet/dry conditions, which are parameters that need to be monitored during the simulation and the classification of simulation type.

1.2 The application of this guide is broad and can incorporate a range of materials, environments and conditions that are beyond the scope of a single test method. The apparatus and procedures contained herein are principally directed at establishing acceptable procedures for CUI simulation for the purposes of evaluating the corrosivity of CUI environments on carbon and low alloy pipe steels, and may possibly be applicable to other materials as well. However, the same or similar procedures can also be utilized for the evaluation of (1) CUI on other metals or alloys, (2) anti-corrosive treatments on metal surfaces, and (3) the potential contribution of thermal insulation and its constituents on CUI. The only requirements are that they can be machined, formed or incorporated into the CUI-Cell pipe configuration as described herein.

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

A106/A106M Specification for Seamless Carbon Steel Pipe for High-Temperature Service

C552 Specification for Cellular Glass Thermal Insulation

C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions

D1193 Specification for Reagent Water

G1 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens

G3 Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing

G5 Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements

G15 Terminology Relating to Corrosion and Corrosion Testing

G31 Practice for Laboratory Immersion Corrosion Testing of Metals

G46 Guide for Examination and Evaluation of Pitting Corrosion

G59 Test Method for Conducting Potentiodynamic Polarization Resistance Measurements

G102 Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements


Keywords

corrosion under insulation; CUI; electrochemistry; mass loss; polarization resistance; protection efficiency; thermal insulation;


ICS Code

ICS Number Code 23.040.99 (Other pipeline components)


DOI: 10.1520/G0189

ASTM International is a member of CrossRef.

ASTM G189

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $885.59 Buy
VAR
ASTM
[+] $4,507.56 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X