FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F902 1990ASTM F902-84-Reapproved1990Withdrawn Standard: Practice for Calculating the Average Circular-Capillary-Equivalent Pore Diameter in Filter Media from Measurements of Porosity and Permeability (Withdrawn 1999)ASTM F902Scope 1.1 This practice provides a way of depicting a unit volume of a filter medium by combining the two separate measurements of permeability and porosity (fractional void volume) into one value: the average pore diameter defined by a fluid during viscous flow through the medium. Diameter is that term in the Hagen-Poiseuille law relating to viscous flow through a circular pipe. 1.2 This practice has two limitations. Where the average pore diameter approaches the length of the mean-free path of a gas molecule, laminar flow cannot occur and the practice cannot be used. Where a fluid may attack the filter medium, that fluid cannot be used; nor, would the medium ever be used to filter that fluid. 1.3 This practice is useful not only for those filter media that are examined by bubble-point measurements, but also for thicker and coarser media that do not lend themselves to bubble-point analysis. 1.4 Average diameter in this practice differs from an average diameter deduced from fluid-intrusion measurements. This practice involves viscous flow, the other pore volume, or cross-sectional area. In viscous flow the flow rate under a given driving force is a function of the square of the cross-sectional area. 1.5 Where Test Method F316, an extended bubble-point test, determines the diameter of a mean flow pore, that diameter differs from the average flow pore in this practice by definition of what is measured. Footnote reference 2 offers a more detailed analysis of extended bubble-point data than does Test Method F316 to explain the concept of average and against which one may compare the concept of mean offered by Test Method F316. 1.6 Methods F778 addresses the details of measuring the gas permeability of filter media. Where Test Method E128 uses air to measure permeability, the method employs an air pressure of 10 cm Hg, or 0.13 atmos gage upstream to zero gage pressure downstream. This practice suggests, as does Methods F778, that the differential should be no more than 0.05 atmos so as to avoid the extra effort of correcting for differences in gas density between the two faces of the medium. 1.7 This practice is applicable to "homogenous" filter media where the average pore size on one face is not too different from that on the other face. The procedure is not applicable to filter media composed of two or more layers of material where the average pore size in one layer is very different from that in another layer. The procedure does not define "too different" or "very different," but instead requires that the investigator, in reporting test results, make some statement about the apparent composition of the filter medium tested. 1.8 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Keywords Filters/filter procedures; Flow and flow rate-filters; Fractional void volume; Nondestructive evaluation (NDE); Permeability-filters; Pore diameter; Porosity; average circular-capillary-equivalent pore diameter in filter media,; practice,; Volume; unit volume of filter medium, by calculating; circular-capillary-equivalent pore diameter, practice ICS Code ICS Number Code n/a DOI: This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|