FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F3499 2021ASTM F3499-21Active Standard: Standard Test Method for Confirming the Docking Performance of A-UGVsASTM F3499Scope 1.1 This test method defines standard tests that demonstrate and confirm positioning of an A-UGV. Positioning, the repeatability of A-UGV location when stationary after completing maneuvers to a stop location, may be defined globally or locally relative to local infrastructure. The latter has become known as docking. See Terminology F3200-18a for terminology definitions. The test also includes a method to confirm the repeatability of height control of load transfer equipment, for example an A-UGV with fork tines. 1.2 This test method is intended for use by A-UGV manufacturers, installers, and users to quantitatively confirm the maneuverability and repeatability of an A-UGV’s positioning or docking. Positioning and docking are similar operations and the tests described are applicable to either. The term docking will be used throughout this test method to include both global positioning and local docking. The tests facilitate comparative trials across a set of A-UGVs or multiple trials over a period of time. 1.3 The tests can be carried out by many vehicles using different methods of location measurement and control to achieve the demanded performance. Vehicle configurations and vehicle components include: 1.3.1 Vehicle load type (for example, fork lift, roller deck, trailer, flat deck); 1.3.2 Vehicle drive mechanics (for example, steered tricycle, two-wheel differential, steered omni-directional or ‘mecanum wheel’ drives); 1.3.3 Navigation sensors (for example, scanning laser, local beacons, floor marking, environmental features); 1.3.4 Docking sensors (sensors, for example, camera, line detector, and laser scanner, which are used primarily for local measurement at the dock). 1.4 The A-UGV may include roller tables, fork tines, robot arm(s) or other mechanisms to transfer the load or interact with the dock (for example, perform assembly). The standard test can be applied to A-UGVs with any of these load transfer mechanisms. The repeatability along each measured axis is measured and compared to a defined repeatability margin. The set of repeatability margins comprises the complete task performance margin (TPM). 1.5 This test method shall be performed in a testing laboratory or the location where the specified apparatus and environmental conditions are implemented. Environmental conditions shall be recorded as specified in Practice F3218-17. 1.6 Standard test apparatus is specified to be easily fabricated, facilitating self-evaluation by A-UGV developers and users, and providing practice for A-UGV developers, users, and potential users that exercise A-UGV actuators, sensors, and controls. 1.7 The values stated in SI units are to be regarded as the standard. Where shown, the values in parentheses are approximate mathematical conversions to inch-pound units given for the purpose of specifying material dimensions or quantities. The values in parentheses are provided for information only and are not considered standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. ANSI/ITSDF B56.5-2019 provides safety standards which must be adhered to during these A-UGV tests. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords A-UGV (automatic, automated, autonomous – unmanned ground vehicle); AGV (automatic guided vehicle); AMR (autonomous mobile robot); dock; docking; positioning; ICS Code ICS Number Code 35.240.50 (IT applications in industry) DOI: 10.1520/F3499-21 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|