FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F1802 2015ASTM F1802-15Historical Standard: Standard Test Method for Performance Testing of Excess Flow ValvesASTM F1802Scope 1.1 This test method covers a standardized method to determine the performance of excess flow valves (EFVs) designed to limit flow or stop flow in thermoplastic natural gas service lines.2 1.2 All tests are intended to be performed using air as the test fluid. Unless otherwise stated, all flow rates are reported in standard cubic feet per hour of 0.6 relative density natural gas. 1.3 The test method recognizes two types of EFV. One type, an excess flow valve-bypass (EFVB), allows a small amount of gas to bleed through (bypass) after it has tripped, usually as a means of automatically resetting the device. The second type, an excess flow valve-non bypass (EFVNB), is intended to trip shut forming an essentially gas tight seal. 1.4 The performance characteristics covered in this test method include flow at trip point, pressure drop across the EFV, bypass flow rate of the EFVB or leak rate through the EFVNB after trip, and verification that the EFV can be reset. 1.4.1 Gas distribution systems may contain condensates and particulates such as organic matter, sand, dirt, and iron compounds. Field experience has shown that the operating characteristics of some EFVs may be affected by accumulations of these materials. The tests of Section 11 were developed to provide a simple, inexpensive, reproducible test that quantifies the effect, if any, of a uniform coating of kerosene and of kerosene contaminated with a specified amount of ferric oxide powder on an EFV's operating characteristics. 1.5 Excess flow valves covered by this test method will normally have the following characteristics: a pressure rating of up to 125 psig (0.86 MPa); a trip flow of between 200 and 2500 ft3/h (5.66 and 70.8 m3/h) at 10 psig (0.07 MPa); a minimum temperature rating of 0°F(–18°C), and a maximum temperature rating of 100°F (38°C). 1.6 The EFVs covered by this test method shall be constructed to fit piping systems no smaller than 1/2 CTS and no larger than 11/4 IPS, including both pipe and tubing sizes. 1.7 Tests will be performed at 67 ± 10°F (19.4 ± 5.5°C). Alternative optional test temperatures are 100 ± 10°F (37.7 ± 5.5°C) and 0 ± 10°F (–18 ± 5.5°C). All flow rates must be corrected to standard conditions. 1.8 This test method was written for EFVs installed in thermoplastic piping systems. However, it is expected that the test method may also be used for similar devices in other piping systems. 1.9 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautions, see Section 8. Keywords excess flow valve (EFV); excess flow valve bypass (EFVB); excess flow valve non-bypass (EFVNB); ICS Code ICS Number Code 23.060.20 (Ball and plug valves) DOI: 10.1520/F1802-15 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|