FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F1394 2012ASTM F1394 - 92(2012)Standard Test Method for Determination of Particle Contribution from Gas Distribution System ValvesActive Standard ASTM F1394 | Developed by Subcommittee: F01.10 Book of Standards Volume: 10.04 ASTM F1394Significance and Use 4.1 The purpose of this test method is to define a procedure for testing components intended for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for the purposes of qualification for this installation. 4.2 Background Testing This test method uses background testing to ensure that the system is not contributing particles above a low, acceptable level. This ensures that counts seen are from the test device, not from a contaminated system. The techniques used to obtain background counts do not produce conditions identical to the conditions existing when a test device is in place. It is recommended that the control products be run periodically to see that they give consistent results. These control products should be the lowest particle release products. They will be additional proof that the system is not contributing excess particles during the static, dynamic, or impact portions of the test. 4.3 This test method can be used for testing lengths of tubing. The flow criteria will be identical to that indicated for valves. A tubing test would only include the static background, the impact background, and the static and impact portions of the method. A dynamic portion could be added by actuating the upstream pneumatic valve (PV1), thus creating a flow surge to the test length of tubing. 1. Scope 1.1 This test method covers gas distribution system components intended for installation into a high-purity gas distribution system. 1.1.1 This test method describes a procedure designed to draw statistically significant comparisons of particulate generation performance of valves tested under aggressive conditions. 1.1.2 This test method is not intended as a methodology for monitoring on-going particle performance once a particular valve has been tested. 1.2 This test method utilizes a condensation nucleus counter (CNC) applied to in-line gas valves typically used in semiconductor applications. It applies to automatic and manual valves of various types (such as diaphragms or bellows), 6.3 through 12.7-mm ( 1 / 4 through 1 / 2 -in.) size. For applications of this test method to larger valves, see the table in the appendix. 1.2.1 Valves larger than 12.7 mm ( 1 / 2 in.) can be tested by this methodology. The test stand must be sized accordingly. Components larger than 12.7 mm ( 1 / 2 in.) should be tested while maintaining a Reynolds number of 20?000 to 21?000. This is the Reynolds number for 12.7-mm ( 1 / 2 -in.) components tested at a velocity of 30.5 m/s (100 ft/s). 1.3 Limitations: 1.3.1 This test method is applicable to total particle count greater than the minimum detection limit (MDL) of the condensation nucleus particle counter and does not consider classifying data into various size ranges. 1.3.1.1 It is questionable whether significant data can be generated from nondynamic components (such as fittings and short lengths of tubing) to compare, with statistical significance, to the data generated from the spool piece. For this reason, this test method cannot reliably support comparisons between these types of components. 1.3.1.2 If detection or classification of particles, or both, in the size range of laser particle counter (LPC) technology is of interest, an LPC can be utilized for testing components. Flow rates, test times, sampling apparatus, and data analysis outlined in this test method do not apply for use with an LPC. Because of these variations, data from CNCs are not comparable to data from LPCs. 1.3.2 This test method specifies flow and mechanical stress conditions in excess of those considered typical. These conditions should not exceed those recommended by the manufacturer. Actual performance under normal operating conditions may vary. 1.3.3 The test method is limited to nitrogen or clean dry air. Performance with other gases may vary. 1.3.4 This test method is intended for use by operators who understand the use of the apparatus at a level equivalent to six months of experience. 1.3.5 The appropriate particle counter manufacturer's operating and maintenance manuals should be consulted when using this test method. 1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 6 , Hazards.
Federal Standard FED-STD-209D Federal Standard Clean Room and Work Station Requirements, Controlled Environment Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.Keywords condensation nucleus center; contamination; gas distribution; gas distribution valves; isokinetic sampling; nitrogen; particle contamination; particle counter; particles; semiconductor processing; ICS Code ICS Number Code 23.060.20 (Ball and plug valves); 23.060.10 (Globe valves) DOI: 10.1520/F1394-92R12 ASTM International is a member of CrossRef. ASTM F1394This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|