ASTM E722-04
Historical Standard: ASTM E722-04 Standard Practice for Characterizing Neutron Energy Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics
SUPERSEDED (see Active link, below)
ASTM E722
1. Scope
1.1 This practice covers procedures for characterizing a neutron fluence from a source in terms of an equivalent monoenergetic neutron fluence. It is applicable to neutron effects testing, to the development of test specifications, and to the characterization of neutron test environments. The sources may have a broad neutron-energy spectrum, or may be mono-energetic neutron sources with energies up to 20 MeV. The relevant equivalence is in terms of a specified effect on certain physical properties of materials upon which the source spectrum is incident. In order to achieve this, knowledge of the effects of neutrons as a function of energy on the specific property of the material of interest is required. Sharp variations in the effects with neutron energy may limit the usefulness of this practice in the case of mono-energetic sources.
1.2 This practice is presented in a manner to be of general application to a variety of materials and sources. Correlation between displacements () caused by different particles (electrons, neutrons, protons, and heavy ions) is beyond the scope of this practice. In radiation-hardness testing of electronic semiconductor devices, specific materials of interest include silicon and gallium arsenide, and the neutron sources generally are test and research reactors and californium-252 irradiators.
1.3 The technique involved relies on the following factors: (1) a detailed determination of the energy spectrum of the neutron source, and (2) a knowledge of the degradation (damage) effects of neutrons as a function of energy on specific material properties.
1.4 The detailed determination of the neutron energy spectrum referred to in need not be performed afresh for each test exposure, provided the exposure conditions are repeatable. When the spectrum determination is not repeated, a neutron fluence monitor shall be used for each test exposure.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
E170 Terminology Relating to Radiation Measurements and Dosimetry
E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32
E693 Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID)
E720 Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
E721 Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics
E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)
E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)
Keywords
displacement damage; electronic hardness; gallium arsenide; hardness parameter; silicon; silicon damage; silicon equivalent damage (SED); 1 MeV equivalent fluence; Displacement--electronic materials/applications; Electrical conductors (semiconductors); Electronic hardness; Gamma radiation--electronic components/devices; 1MeV equivalent fluence; Neutron flux/fluence; Neutron sensors; Radiation-hardness testing; Silicon equivalent damage (SED); Silicon semiconductors ;
ICS Code
ICS Number Code 31.080.01 (Semi-conductor devices in general)
DOI: 10.1520/E0722-04
ASTM International is a member of CrossRef.