Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E3427-24 Standard Guide for Measuring Intensity, Polydispersity, Size, Zeta Potential, Molecular Weight, and Concentration of Nanoparticles in Liquid Suspension Using Laser-Amplified Detection/Power Spectrum Analysis (LAD/PSA) Technology
    Edition: 2024
    $86.11
    Unlimited Users per year

Description of ASTM-E3427 2024

ASTM E3427-24

Active Standard: Standard Guide for Measuring Intensity, Polydispersity, Size, Zeta Potential, Molecular Weight, and Concentration of Nanoparticles in Liquid Suspension Using Laser-Amplified Detection/Power Spectrum Analysis (LAD/PSA) Technology




ASTM E3427

Scope

1.1 The technology, laser-amplified detection/power spectrum analysis (LAD/PSA), is available in three different platforms, which will be designated as Platforms A, B, and C.

1.1.1 Platform A—This is a solid-state probe configuration that serves as the optical bench in each of the platforms. It consists of an optical fiber coupler with a y-beam splitter that directs the scattered light signal from the nanoparticles at 180° back to a photodiode detector. The sensing end of the probe can be immersed in a suspension or positioned to measure one drop of a sample on top of the sensing surface.

1.1.2 Platform B—The same probe is mounted in a case, positioned horizontally, to detect the signal from either a disposable or permanent cuvette.

1.1.3 Platform C—Two probes are mounted in a case, horizontally, at opposite sides of a permanent sample cell. Both size distribution and zeta potential can be measured in this configuration.

1.2 The laser beam travelling through the probe measuring the scattered light from the sample of nanoparticles, in all three platforms, is partially reflected back to the same photodiode detector, and the high optical power of the laser is added to the low optical power of the scattered light signal. The interference (mixing or beating) of those two signals is known as heterodyne beating. The resulting high-power detected signal provides the highest signal-to-noise ratio among dynamic light-scattering (DLS) technologies.

1.3 This combined, amplified, optical signal is converted with a Fast Fourier transform (FFT) into a frequency power spectrum, then into a logarithmic power spectrum that is deconvolved into number and volume size distributions. The mean intensity, polydispersity, number and volume size distributions, concentration, and molecular weight can be reported in all platforms, plus zeta potential on Platform C.

1.4 This technology is capable of measuring nanoparticles in a size range from 2.0 nanometres (nm) to 10 micrometres (µm), at concentrations in a suspending liquid medium up to 40 % cc/mL for all parameters given in 1.3.

1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

dynamic light scattering; nanoparticles; nanoparticle size; photon correlation spectroscopy; power spectrum; quasi-elastic light scattering; zeta potential;


ICS Code

ICS Number Code 19.120 (Particle size analysis. Sieving)


DOI: 10.1520/E3427-24

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $784.84 Buy
VAR
ASTM
[+] $3,716.67 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X