FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E3045 2022ASTM E3045-22Redline Standard: Standard Practice for Crack Detection Using Vibroacoustic ThermographyASTM E3045Scope 1.1 Purpose—This practice covers procedures required to conduct an examination of components using vibroacoustic thermography. 1.2 Application—The vibroacoustic thermography process has been used for component inspections in the aircraft, power generation, automotive, and other industries for testing new and serviced components, both coated and uncoated. Current applications are mostly targeting metallic components, but composite and ceramic component applications are under development (1).2 1.3 Background—Vibroacoustic thermography is an active thermography technique that falls under the category of Infrared Thermography Testing (IRT). The technique was first published by Henneke, et al. in 1979 (2) and has been expanded on and popularized by Favro, et al. (3). During the test, a defect thermal response resulting from a short burst of ultrasonic energy typically in the range of 15 kHz to 40 kHz is detected by an infrared camera. The ultrasound coupled into the component being tested can activate a thermal response in defects with contact areas that can move against each other, that is, cracks and delamination. There are different energizing and coupling techniques that are commonly used depending on the needs and capabilities. These variations and the down selection process are not included in the procedure and should be developed/optimized by experimentation for each new component application. Note 1: Vibroacoustic thermography is typically sensitive to tight planar defects (4). Volumetric defects such as porosity, inclusions, open ruptures, or cracks in wide-open areas, will not typically result in an indication. Therefore, an augmenting method should be conducted to detect volumetric defects. (See Terminology E1316.) Note 2: Vibroacoustic thermography is a surface examination but has demonstrated detection sensitivity for subsurface defects including back wall defects for thin components (5), (6). Care should be taken when developing vibroacoustic thermography for the detection of subsurface defects. 1.4 Warnings: 1.4.1 Warning—Vibroacoustic thermography requires the energization of the test article with vibrational energy. During energization, the complete component may be excited with vibroacoustic (vibration) energy for as long as several seconds. The development of this test for a new application requires special measurements, precautions, and attention to component response. The component design engineer and the NDE engineering specialist knowledgeable of this technique should be satisfied that the test will not cause damage or reduction of service life. 1.4.2 Warning—Vibroacoustic thermography, like any other NDT technology, requires thorough development and testing for each application, including clear definition of the inspection objective, as well as development of objective means to distinguish between rejectable indications and conditions that should not be cause for rejection. Incomplete development and application will result in high incidence of improper rejections and high incidence of defect "misses." 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords crack detection; infrared thermography testing; planar defect detection; thermal testing; vibroacoustic thermography; ICS Code ICS Number Code 19.100 (Non-destructive testing) DOI: 10.1520/E3045-22 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|