Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E228-17 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer
    Edition: 2017
    $103.58
    Unlimited Users per year

Description of ASTM-E228 2017

ASTM E228-17

Historical Standard: Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer




ASTM E228

Scope

1.1 This test method covers the determination of the linear thermal expansion of rigid solid materials using push-rod dilatometers. This method is applicable over any practical temperature range where a device can be constructed to satisfy the performance requirements set forth in this standard.

Note 1: Initially, this method was developed for vitreous silica dilatometers operating over a temperature range of –180°C to 900°C. The concepts and principles have been amply documented in the literature to be equally applicable for operating at higher temperatures. The precision and bias of these systems is believed to be of the same order as that for silica systems up to 900°C. However, their precision and bias have not yet been established over the relevant total range of temperature due to the lack of well-characterized reference materials and the need for interlaboratory comparisons.

1.2 For this purpose, a rigid solid is defined as a material that, at test temperature and under the stresses imposed by instrumentation, has a negligible creep or elastic strain rate, or both, thus insignificantly affecting the precision of thermal-length change measurements. This includes, as examples, metals, ceramics, refractories, glasses, rocks and minerals, graphites, plastics, cements, cured mortars, woods, and a variety of composites.

1.3 The precision of this comparative test method is higher than that of other push-rod dilatometry techniques (for example, Test Method D696) and thermomechanical analysis (for example, Test Method E831) but is significantly lower than that of absolute methods such as interferometry (for example, Test Method E289). It is generally applicable to materials having absolute linear expansion coefficients exceeding 0.5 μm/(m·°C) for a 1000°C range, and under special circumstances can be used for lower expansion materials when special precautions are used to ensure that the produced expansion of the specimen falls within the capabilities of the measuring system. In such cases, a sufficiently long specimen was found to meet the specification.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

contraction; dilatometer; dilatometry; expansion; expansivity; linear thermal expansion; mean coefficient of thermal expansion; push-rod;


ICS Code

ICS Number Code 77.040.99 (Other methods of testing of metals)


DOI: 10.1520/E0228-17

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $2,029.11 Buy
VAR
ASTM
[+] $3,560.85 Buy
VAR
ASTM
[+] $3,716.67 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X