Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6732)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E1529-22 Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies
    Edition: 2022
    $123.55
    Unlimited Users per year

Description of ASTM-E1529 2022

ASTM E1529-22

Active Standard: Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies




ASTM E1529

Scope

1.1 The test methods described in this fire-test-response standard are used for determining the fire-test response of columns, girders, beams or similar structural members, and fire-containment walls, of either homogeneous or composite construction, that are employed in HPI or other facilities subject to large hydrocarbon pool fires.

1.2 It is the intent that tests conducted in accordance with these test methods will indicate whether structural members of assemblies, or fire-containment wall assemblies, will continue to perform their intended function during the period of fire exposure. These tests shall not be construed as having determined suitability for use after fire exposure.

1.3 These test methods prescribe a standard fire exposure for comparing the relative performance of different structural and fire-containment wall assemblies under controlled laboratory conditions. The application of these test results to predict the performance of actual assemblies when exposed to large pool fires requires a careful engineering evaluation.

1.4 These test methods provide for quantitative heat flux measurements during both the control calibration and the actual test. These heat flux measurements are being made to support the development of design fires and the use of fire safety engineering models to predict thermal exposure and material performance in a wide range of fire scenarios.

1.5 These test methods are useful for testing other items such as piping, electrical circuits in conduit, floors or decks, and cable trays. Testing of these types of items requires development of appropriate specimen details and end-point or failure criteria. Such failure criteria and test specimen descriptions are not provided in these test methods.

1.6 Limitations—These test methods do not provide the following:

1.6.1 Full information on the performance of assemblies constructed with components or of dimensions other than those tested.

1.6.2 An evaluation of the degree to which the assembly contributes to the fire hazard through the generation of smoke, toxic gases, or other products of combustion.

1.6.3 Simulation of fire behavior of joints or connections between structural elements such as beam-to-column connections.

1.6.4 Measurement of flame spread over the surface of the test assembly.

1.6.5 Procedures for measuring the test performance of other structural shapes (such as vessel skirts), equipment (such as electrical cables, motor-operated valves, etc.), or items subject to large hydrocarbon pool fires, other than those described in 1.1.

1.6.6 The erosive effect that the velocities or turbulence, or both, generated in large pool fires has on some fire protection materials.

1.6.7 Full information on the performance of assemblies at times less than 5 min because the rise time called out in Section 5 is longer than that of a real fire.

1.7 These test methods do not preclude the use of a real fire or any other method of evaluating the performance of structural members and assemblies in simulated fire conditions. Any test method that is demonstrated to comply with Section 5 is acceptable.

1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.9 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.

1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.11 The text of this standard references notes and footnotes which provide explanatory information. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.

1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

fire test response; hydrocarbon pool fire; heat flux; temperature; thermal exposure; thermal shock ;


ICS Code

ICS Number Code 13.220.01 (General standards related to fire protection)


DOI: 10.1520/E1529-22

The following editions for this book are also available...

Format Year Publisher Type Title Annual Price
2000
ASTM
Model Standard
$113.57 Buy
2006
ASTM
Model Standard
$113.57 Buy
2013
ASTM
Model Standard
$148.51 Buy
2010
ASTM
Model Standard
$148.51 Buy
2016
ASTM
Model Standard
$148.51 Buy
2016
ASTM
Model Standard
$148.51 Buy
2014
ASTM
Model Standard
$148.51 Buy
2014
ASTM
Model Standard
$148.51 Buy
2022
ASTM
Model Standard
$148.51 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $3,738.90 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $1,207.99 Buy
VAR
ASTM
[+] $6,103.29 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X