Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(343)
(623)
(599)
(55)
(234)
(1019)
(696)
(2187)
(117)
(95582)
(63)
(590)
(124)
(33)
(24)
(20)
(96542)
(17)
(1)
(374)
(325)
(7076)
(241)
(21)
(7)
(1669)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E1231-24 Standard Practice for Calculation of Hazard Potential Figures of Merit for Thermally Unstable Materials (Redline)
    Edition: 2024
    $144.00
    Unlimited Users per year

Description of ASTM-E1231 2024

ASTM E1231-24

Redline Standard: Standard Practice for Calculation of Hazard Potential Figures of Merit for Thermally Unstable Materials




ASTM E1231

Scope

1.1 This practice covers the calculation of hazard potential figures of merit for exothermic reactions, including:

(1) Time-to-thermal-runaway,

(2) Time-to-maximum-rate,

(3) Critical half thickness,

(4) Critical temperature,

(5) Adiabatic decomposition temperature rise,

(6) Explosion potential,

(7) Shock sensitivity,

(8) Instantaneous power density, and

(9) National Fire Protection Association (NFPA) instability rating.

1.2 The kinetic parameters needed in this calculation may be obtained from differential scanning calorimetry (DSC) curves by methods described in other documents.

1.3 This technique is the best applicable to simple, single reactions whose behavior can be described by the Arrhenius equation and the general rate law. For reactions which do not meet these conditions, this technique may, with caution, serve as an approximation.

1.4 The calculations and results of this practice might be used to estimate the relative degree of hazard for experimental and research quantities of thermally unstable materials for which little experience and few data are available. Comparable calculations and results performed with data developed for well characterized materials in identical equipment, environment, and geometry are key to the ability to estimate relative hazard.

1.5 The figures of merit calculated as described in this practice are intended to be used only as a guide for the estimation of the relative thermal hazard potential of a system (materials, container, and surroundings). They are not intended to predict actual thermokinetic performance. The calculated errors for these parameters are an intimate part of this practice and must be provided to stress this. It is strongly recommended that those using the data provided by this practice seek the consultation of qualified personnel for proper interpretation.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

adiabatic decomposition temperature rise; adiabatic temperature rise; critical dimension; critical temperature; differential scanning calorimetry; explosion potential; hazard; instability rating; instantaneous power density; shock sensitivity; thermal analysis; thermal hazard; thermal runway;


ICS Code

ICS Number Code 13.230 (Explosion protection)


DOI: 10.1520/E1231-24



X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100