Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94624)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E1186-03(2009) Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems
    Edition: 2009
    $103.58
    Unlimited Users per year

Description of ASTM-E1186 2009

ASTM E1186 - 03(2009)

Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems

Active Standard ASTM E1186 | Developed by Subcommittee: E06.41

Book of Standards Volume: 04.11




ASTM E1186

Significance and Use

Air infiltration into the conditioned space of a building accounts for a significant portion of the thermal space condition load. Air infiltration can affect occupant comfort by producing drafts, cause indoor air quality problems by carrying outdoor pollutants into occupied building space and, in hot humid climates, can deposit moisture in the building envelope resulting in deterioration of building envelope components. In cold climates, exfiltration of conditioned air out of a building can deposit moisture in the building envelope causing deterioration of building envelope components. Differential pressure across the building envelope and the presence of air leakage sites cause air infiltration and exfiltration (1) .

In some buildings, restricting air movement between interior zones of a building may be desired to separate dissimilar interior environments or prevent the movement of pollutants. Although not dealt with specifically in this standard, the detection practices presented can also be useful in detecting air leaks between interior zones of the building.

Air leakage sites are often difficult to locate because air flows may be small under the prevailing weather conditions. Wind conditions can aid in air leakage detection by forcing air to enter a building; however, where air is exiting, the building envelope construction may make observations difficult. For these reasons, forced pressurization or depressurization is strongly recommended for those practices which require controlled flow direction.

The techniques for air leakage site detection covered in these practices allow for a wide range of flexibility in the choice of techniques that are best suited for detecting various types of air leakage sites in specific situations.

The infrared scanning technique for air leakage site detection has the advantage of rapid surveying capability. Entire building exterior surfaces or inside wall surfaces can be covered with a single scan or a simple scanning action, provided there are no obscuring thermal effects from construction features or incident solar radiation. The details of a specific air leakage site may then be probed more closely by focusing on the local area. Local leak detection is well addressed with the smoke tracer, anemometer, sound detection, the bubble detection, and the tracer gas techniques, however these techniques are time consuming for large surfaces. The pressurized or depressurized test chamber and smoke tracer or a depressurized test chamber and leak detection liquid practices can be used in situations where depressurizing or pressurizing the entire envelope is impractical, such as is the case during construction. Both of the practices enable the detection of very small leaks. To perform these practices requires that the air barrier system be accessible.

Complexity of building air leakage sites may diminish the ability for detection. For example, using the sound detection approach, sound may be absorbed in the tortuous path through the insulation. Air moving through such building leakage paths may lose some of its temperature differential and thus make thermographic detection difficult. The absence of jet-like air flow at an air leakage site may make detection using the anemometer practice difficult.

Stack effect in multistory commercial buildings can cause gravity dampers to stand open. Computer-controlled dampers should be placed in normal and night modes to aid in determining the conditions existing in the building. Sensitive pressure measurement equipment can be used for evaluating pressure levels between floors and the exterior. Monitoring systems in high-tech buildings can supply qualitative data on pressure differences.

1. Scope

1.1 These practices cover standardized techniques for locating air leakage sites in building envelopes and air barrier systems.

1.2 These practices offer a choice of means for determining the location of air leakage sites with each offering certain advantages for specific applications.

1.3 Some of the practices require a knowledge of infrared scanning, building and test chamber pressurization and depressurization, smoke generation techniques, sound generation and detection, and tracer gas concentration measurement techniques.

1.4 The practices described are of a qualitative nature in determining the air leakage sites rather than determining quantitative leakage rates.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E631 Terminology of Building Constructions

E741 Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution

E779 Test Method for Determining Air Leakage Rate by Fan Pressurization

Other Standards

ISO Standard 6781 Thermal Insulation--Qualitative Detection of Thermal Irregularities in Building Envelopes--Infrared Method

Keywords

acoustic method; air barrier system; air leakage; air leakage detection; anemometer method; bubble method; building envelopes; infrared method; smoke trace method; tracer gas method; Acoustical tests; Air leakage testing--building materials/constructions; Air retarder (AR) systems; Anemometers; Building envelopes; Depressurization (pressurization)/infrared method; Infiltration rate; Infrared (IR) analysis; Insulation; Leak testing--building constructions/materials; Pressure testing--building constructions/materials; Smoke tracer method; Tracer gas method;


ICS Code

ICS Number Code 91.120.99 (Other standards related to protection of and in buildings)


DOI: 10.1520/E1186-03R09

ASTM International is a member of CrossRef.

ASTM E1186

Customers who bought this book also bought...

Format Year Publisher Type Title Annual Price
2003
ASTM
Model Standard
$113.57 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,750.22 Buy
VAR
ASTM
[+] $1,132.80 Buy
VAR
ASTM
[+] $1,636.18 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy
VAR
ASTM
[+] $3,560.85 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X