FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E1186 2009ASTM E1186 - 03(2009)Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier SystemsActive Standard ASTM E1186 | Developed by Subcommittee: E06.41 Book of Standards Volume: 04.11 ASTM E1186Significance and Use Air infiltration into the conditioned space of a building accounts for a significant portion of the thermal space condition load. Air infiltration can affect occupant comfort by producing drafts, cause indoor air quality problems by carrying outdoor pollutants into occupied building space and, in hot humid climates, can deposit moisture in the building envelope resulting in deterioration of building envelope components. In cold climates, exfiltration of conditioned air out of a building can deposit moisture in the building envelope causing deterioration of building envelope components. Differential pressure across the building envelope and the presence of air leakage sites cause air infiltration and exfiltration (1) . In some buildings, restricting air movement between interior zones of a building may be desired to separate dissimilar interior environments or prevent the movement of pollutants. Although not dealt with specifically in this standard, the detection practices presented can also be useful in detecting air leaks between interior zones of the building. Air leakage sites are often difficult to locate because air flows may be small under the prevailing weather conditions. Wind conditions can aid in air leakage detection by forcing air to enter a building; however, where air is exiting, the building envelope construction may make observations difficult. For these reasons, forced pressurization or depressurization is strongly recommended for those practices which require controlled flow direction. The techniques for air leakage site detection covered in these practices allow for a wide range of flexibility in the choice of techniques that are best suited for detecting various types of air leakage sites in specific situations. The infrared scanning technique for air leakage site detection has the advantage of rapid surveying capability. Entire building exterior surfaces or inside wall surfaces can be covered with a single scan or a simple scanning action, provided there are no obscuring thermal effects from construction features or incident solar radiation. The details of a specific air leakage site may then be probed more closely by focusing on the local area. Local leak detection is well addressed with the smoke tracer, anemometer, sound detection, the bubble detection, and the tracer gas techniques, however these techniques are time consuming for large surfaces. The pressurized or depressurized test chamber and smoke tracer or a depressurized test chamber and leak detection liquid practices can be used in situations where depressurizing or pressurizing the entire envelope is impractical, such as is the case during construction. Both of the practices enable the detection of very small leaks. To perform these practices requires that the air barrier system be accessible. Complexity of building air leakage sites may diminish the ability for detection. For example, using the sound detection approach, sound may be absorbed in the tortuous path through the insulation. Air moving through such building leakage paths may lose some of its temperature differential and thus make thermographic detection difficult. The absence of jet-like air flow at an air leakage site may make detection using the anemometer practice difficult. Stack effect in multistory commercial buildings can cause gravity dampers to stand open. Computer-controlled dampers should be placed in normal and night modes to aid in determining the conditions existing in the building. Sensitive pressure measurement equipment can be used for evaluating pressure levels between floors and the exterior. Monitoring systems in high-tech buildings can supply qualitative data on pressure differences. 1. Scope 1.1 These practices cover standardized techniques for locating air leakage sites in building envelopes and air barrier systems. 1.2 These practices offer a choice of means for determining the location of air leakage sites with each offering certain advantages for specific applications. 1.3 Some of the practices require a knowledge of infrared scanning, building and test chamber pressurization and depressurization, smoke generation techniques, sound generation and detection, and tracer gas concentration measurement techniques. 1.4 The practices described are of a qualitative nature in determining the air leakage sites rather than determining quantitative leakage rates. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.
ASTM Standards E631 Terminology of Building Constructions E741 Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution E779 Test Method for Determining Air Leakage Rate by Fan Pressurization Other Standards ISO Standard 6781 Thermal Insulation--Qualitative Detection of Thermal Irregularities in Building Envelopes--Infrared MethodKeywords acoustic method; air barrier system; air leakage; air leakage detection; anemometer method; bubble method; building envelopes; infrared method; smoke trace method; tracer gas method; Acoustical tests; Air leakage testing--building materials/constructions; Air retarder (AR) systems; Anemometers; Building envelopes; Depressurization (pressurization)/infrared method; Infiltration rate; Infrared (IR) analysis; Insulation; Leak testing--building constructions/materials; Pressure testing--building constructions/materials; Smoke tracer method; Tracer gas method; ICS Code ICS Number Code 91.120.99 (Other standards related to protection of and in buildings) DOI: 10.1520/E1186-03R09 ASTM International is a member of CrossRef. ASTM E1186Customers who bought this book also bought...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|