ASTM E1006-02
Historical Standard: ASTM E1006-02 Standard Practice for Analysis and Interpretation of Physics Dosimetry Results for Test Reactors, E 706(II)
SUPERSEDED (see Active link, below)
ASTM E1006
1. Scope
1.1 This practice covers the methodology summarized in to be used in the analysis and interpretation of physics-dosimetry results from test reactors.
1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods.
1.3 Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods.
1.4 This practice is directed towards the development and application of physics-dosimetry-metallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practices E 185, E 560, E 853, and E 1035, Guides E 900, E 2005E 2006and Test Method E 646.
1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
E185 Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels
E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)
E560 Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results, E 706(IC)
E646 Test Method for Tensile Strain-Hardening Exponents (n -Values) of Metallic Sheet Materials
E693 Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID)
E706 Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E 706(0)
E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)
E853 Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706(IA)
E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)
E900 Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)
E910 Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)
E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)
E1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706 (IIIA)
E1018 Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)
E1035 Practice for Determining Neutron Exposures for Nuclear Reactor Vessel Support Structures
E2005 Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields
E2006 Guide for Benchmark Testing of Light Water Reactor Calculations
Keywords
discrete ordinates; dosimetry; Monte Carlo; neutron exposure parameters; radiation transport; test reactor ;
ICS Code
ICS Number Code 17.240 (Radiation measurements)
DOI: 10.1520/E1006-02
ASTM International is a member of CrossRef.