Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D8438/D8438M-23 Standard Test Methods for Use of Hyperspectral Sensors for Soil Nutrient Analysis of Ground Based Samples
    Edition: 2023
    $86.11
    Unlimited Users per year

Description of ASTM-D8438/D8438M 2023

ASTM D8438/D8438M-23

Active Standard: Standard Test Methods for Use of Hyperspectral Sensors for Soil Nutrient Analysis of Ground Based Samples




ASTM D8438/D8438M

Scope

1.1 This test method describes procedures for sampling and testing of soils obtained from ground-based samples using diffuse reflectance spectrometry using handheld portable spectrometers measuring spectra in visible and near infrared (vis-NR) and mid-infrared (MIR) range. The sensor can measure moisture content, PH, organic matter, Cation Exchange Capacity (CEC) as well as macro and micro elemental nutrients in parts per million (PPM) or percentage, including but not limited to nitrogen, phosphorous, potassium, zinc, iron, boron, sulfur, calcium, magnesium, and manganese.

1.2 There are two methods that can be used to perform the test.

1.2.1 Method A—The analysis is performed in the laboratory on the sample after the sample has been oven dried and sieved.

1.2.2 Method B—The analysis is performed in the field on a moist sample after homogenization. After post-processing of multiple reflectance site data using methods A and B, the moisture content can be measured, and the spectral signature is normalized for moisture content.

1.3 The limitation of this method is that the results of an individual test for elemental analysis would not be the same as exacting reference values from traditional wet chemical lab analysis used by soil scientists. Results of wet chemistry tests or tests from soil science libraries may be used to calibrate a specific site model comprised of many individual tests. Spectral data for organics has shown to be as accurate as conventional methods such as Test Methods D2974.

1.4 For soil nutrient analysis the sample is not finely ground as in typical qualitative spectral analysis as outlined in standard Practice E1252. The spectrometer is checked periodically during testing using procedures in accordance with Guide E1866 performance testing.

1.5 Moisture content is a preferred term in agricultural applications. For this standard, gravimetric water content may be measured in accordance with Test Methods D2216 when drying samples and used to calibrate the site model, but the overall results of spectral analysis are more qualitative, and the term Moisture Content is used in this standard.

1.6 Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. Wavelengths are stated only in nanometers, nm. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. The procedures used to specify how data is collected, recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.7.1 Spectral data is acquired by electrical data acquisition systems and therefore numeric data is carried through recording and into databases without rounding of numeric data.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

agricultural management; agriculture; hyperspectral; hyperspectral sensor; nutrient analysis; soil nutrients; soil testing;


ICS Code

ICS Number Code 13.080.30 (Biological properties of soils)


DOI: 10.1520/D8438_D8438M-23

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X