Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94624)
(54)
(568)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D8340-20a Standard Practice for Performance-Based Qualification of Spectroscopic Analyzer Systems
    Edition: 2020
    $113.57
    Unlimited Users per year

Description of ASTM-D8340 2020

ASTM D8340-20a

Historical Standard: Standard Practice for Performance-Based Qualification of Spectroscopic Analyzer Systems




ASTM D8340

Scope

1.1 This practice covers requirements for establishing performance-based qualification of vibrational spectroscopic analyzer systems intended to be used to predict the test result of a material that would be produced by a Primary Test Method (PTM) if the same material is tested by the PTM.

1.1.1 This practice provides methodology to establish the lower/upper prediction limits associated with the Predicted Primary Test Method Result (PPTMR) in 1.1 with a specified degree of confidence that would contain the PTM result (if tested by the PTM).

1.1.2 The prediction limits in 1.1.1 can be used to estimate the confidence that product released using the analyzer system based on a PPTMR that meets PTM-based specification limits will meet PTM-based specification limits when tested by a PTM.

1.2 The practice covers the qualification of on-line, at-line, or laboratory infrared or Raman analyzers used to predict physical, chemical, or performance properties of liquid petroleum products and fuels. Infrared analyzers can operate in the near-infrared (NIR) region, mid-infrared (MIR) region, or both.

1.2.1 This practice applies to all analyzer systems that can meet the performance requirements defined within.

1.2.2 This practice is not limited to analyzers designed by any specific instrument manufacturer.

1.2.3 This practice allows for multiple calibration techniques to create a multivariate model which relates the spectra produced by the analyzer to the corresponding property determined by a PTM. Spectra can be used to predict multiple properties, but the analyzer system performance of each predicted property is qualified individually.

1.3 The practice describes procedures for establishing performance requirements for analyzer system applications. The user of this practice must establish written protocols to confirm the procedures are being followed.

1.4 This practice makes use of standard practices, guides, and methods already established in ASTM. Additional requirements are listed within this practice.

1.5 Any multivariate model that meets performance requirements and detects when the spectrum of a sample is an outlier (analysis that represents an extrapolation of the model) or a nearest neighbor distance inlier (a spectrum residing in a gap in the multivariate space) can be used.

1.6 This practice can be used with methods for determining properties of biofuel blends. Three alternative procedures can be used. In all three cases, the qualification of the predicted values for the blend are established and monitored as part of a continual program by application of Practice D6122 or by combined application of Practices D6122 and D3764 (see definition in section 3.2.3).

1.6.1 If the analyzer is used to directly predict a property of the biofuel blend, and both the Primary Test Method Result (PTMR) and Predicted Primary Test Method Result (PPTMR) are measured on the same material, then the analyzer is validated using Practice D6122.

1.6.2 If the analyzer is used to directly predict a property of a blend stock to which a fixed level of biofuel material is added prior to measurement by the PTM, and if the multivariate model correlates the spectrum of the blend stock to the PTMR for the fixed level blend, then the analyzer is validated using Practice D6122.

1.6.3 If the analyzer directly predicts a property of a blend stock to which some amount of biofuel material is later added, then Practice D6122 is used to validate the analyzer performance. If the PPTMR produced by the analyzer is input into a second model to predict the property value for the final blend, based on the PPTMR for the blend stock and the blend level for the biofuel material, then the performance of this second model is validated using Practice D3764.

1.7 Disclaimer of Liability as to Patented Inventions—Neither ASTM International nor an ASTM committee shall be responsible for identifying all patents under which a license is required in using this document. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

infrared; performance-based; Raman;


ICS Code

ICS Number Code 17.180.30 (Optical measuring instruments)


DOI: 10.1520/D8340-20A

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,169.71 Buy
VAR
ASTM
[+] $5,835.44 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X