Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(319)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7782-13 Standard Practice for Determination of the 99 %/95 % Critical Level (WCL) and a Reliable Detection Estimate (WDE) Based on Within-laboratory Data
    Edition: 2013
    $113.57
    Unlimited Users per year

Description of ASTM-D7782 2013

ASTM D7782-13

Withdrawn Standard: Standard Practice for Determination of the 99 %/95 % Critical Level (WCL) and a Reliable Detection Estimate (WDE) Based on Within-laboratory Data (Withdrawn 2022)




ASTM D7782

Scope

1.1 This practice provides a procedure for computing a 99 %/95 % Within-laboratory Detection Estimate (WDE) and the associated critical level/value (WCL). The WDE is the minimum concentration, with false positives and false negative appropriately controlled, such that values above these minimums are reliable detections. The WCL is the point at which only false positives are controlled appropriately. A false positive is the reporting of an analyte as present when the analyte is not actually present; false negatives are reports of analyte absence when the analyte is actually present. This practice is distinguished from the Interlaboratory Detection Estimate (IDE) practice in that the IDE Standard utilizes data from multiple, independent laboratories, while this practice is for use by a single laboratory. The IDE would be utilized where interlaboratory issues are of concern (for example, limits for published methods); this practice (and values derived from it) are applicable where the results from a single laboratory, single operator, single instrument, etc. are involved (for example, in understanding, censoring and reporting data).

1.2 The establishment of a WDE involves determining the concentration below which the precision and bias of an analytical procedure indicates insufficient confidence in false-positive and false-negative control to assert detection of the analyte in the future analysis of an unknown number of samples. Most traditional approaches attempt to determine this detection “limit” by estimating precision at only a single, arbitrary point. The WDE approach is intended to be a more technically rigorous replacement for other approaches for estimating detection limits. The WDE practice addresses a number of critical issues that are ignored in other approaches.

1.2.1 First, rather than making a single-point estimate of precision, the WDE protocol requires an estimate of precision at multiple points in the analytical range, especially in the range of the expected detection limit. These estimates are then used to create an appropriate model of the method’s precision. This approach is a more credible way to determine the point where relative precision has become too large for reliable detection. This process requires more data than has been historically required by single-point approaches or by processes for modeling the relationship between standard deviation and concentration.

1.2.2 Second, unlike most other approaches, the WDE process accounts for analytical bias at the concentrations of interest. The relationship of true concentration to measured concentration (that is, the recovery curve) is established and utilized in converting from as-measured to true concentration.

1.2.3 Third, most traditional approaches to detection limits only address the issue of false positives. Although false negatives may not be of concern in some data uses, there are many uses where understanding and/or control of false negatives is important. Without the false-negative-control information, data reported with just a critical-level value are incompletely described and the qualities of data at these levels incompletely disclosed.

1.2.4 Fourth and last, the WDE standard utilizes a statistical-tolerance interval in calculations, such that future measurements may reasonably be expected to be encompassed by the WDE 90 % of the time. Many older approaches have used the statistical confidence interval, which is not intended to encompass individual future measurements, and has been misunderstood and misapplied. Procedures using the confidence interval cannot provide the stated control when the detection-limit value is applied to future sample results; such application is the primary use of these values.

1.3 To summarize, the WDE is computed to be the lowest true concentration at which there is 90 % confidence that a single (future) measurement (from the studied laboratory) will have a true detection probability of at least 95 % and a true non-detection probability of at least 99 % (when measuring a blank sample). For the laboratory in the study, the critical value is the true concentration at which, on average, (with approximately 90 % confidence) will not be exceeded by 99 % of all measurements of samples with true concentration of zero (that is, blanks). These values are established by modeling the precision and establishing the recovery/bias over a range of concentrations, as well as by using a tolerance interval. The complexities of the WDE procedure may appear daunting, but the additional considerations are necessary if meaningfully estimates of the actual detection capabilities of analytical methods are to be made. The concepts are tractable by degreed chemists, and the use of the available ASTM DQCALC Excel-based software makes the data analysis and limit determinations easy.

1.4 A within-laboratory detection estimate is useful in characterizing the concentration below which a method, for an analyte, as implemented in a specific laboratory, does not (with high confidence) discriminate the presence of the analyte from that of the absence of an analyte. As such an estimator, the WDE Standard (and the WDE and WCL values produced through its application) are useful where a trace-analysis testing method needs to be used.


Keywords

critical limit; detection; detection limit; false detection; false non-detection; false positive; matrix effects; statistical tolerance interval; true detection; true non-detection


ICS Code

ICS Number Code 17.020 (Metrology and measurement in general)


DOI: 10.1520/D7782-13

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,105.23 Buy
VAR
ASTM
[+] $5,933.17 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X