FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D7394 2013ASTM D7394 - 13Standard Practice for Rheological Characterization of Architectural Coatings using Three Rotational Bench ViscometersActive Standard ASTM D7394 | Developed by Subcommittee: D01.24 Book of Standards Volume: 06.01 ASTM D7394Significance and Use 5.1 A significant feature of this practice is the ability to survey coating rheology over a broad range of shear rates with the same bench viscometers and test protocol that paint formulators and paint QC analysts routinely use. By using this procedure, measurement of the shear rheology of a coating is possible without using an expensive laboratory rheometer, and performance predictions can be made based on those measurements. 5.2 Low-Shear Viscosity (LSV) The determination of low-shear viscosity in this practice can be used to predict the relative in-can performance of coatings for their ability to suspend pigment or prevent syneresis, or both. The LSV can also predict relative performance for leveling and sag resistance after application by roll, brush or spray. Fig. 1 shows the predictive low-shear viscosity relationships for several coatings properties. 5.3 Mid-Shear Viscosity (MSV) The determination of MSV (coating consistency) in this practice is often the first viscosity obtained. This viscosity reflects the coatings resistance to flow on mixing, pouring, pumping, or hand stirring. Architectural coatings nearly always have a target specification for mid-shear viscosity, which is usually obtained by adjusting the level of thickener in the coating. Consequently, mid-shear viscosity is ideally a constant for a given series of coatings being tested to provide meaningful comparisons of low-shear and high-shear viscosity. With viscosities at the same KU value, MSV can also be used to obtain the relative Mid-Shear Thickener Efficiency (MSTE) of different thickeners in the same coating expressed as lb thickener/100 gal wet coating or g thickener/L wet coating. 5.4 High-Shear Viscosity (HSV) High-shear viscosity in this practice is a measure of the coatings resistance to flow on application by brush or roller, which is often referred to as brush-drag or rolling resistance respectively. This viscosity relates to the coatings ability to provide one-coat hiding, its ease of application (brushing or rolling resistance), and its spread rate. Fig. 2 shows high-shear viscosity relationship predictions for relative coating performance. 1. Scope 1.1 This practice covers a popular industry protocol for the rheological characterization of waterborne architectural coatings using three commonly used rotational bench viscometers. Each viscometer operates in a different shear rate regime for determination of coating viscosity at low shear rate, mid shear rate, and at high shear rate respectively as defined herein. General guidelines are provided for predicting some coating performance properties from the viscosity measurements made. With appropriate correlations and subsequent modification of the performance guidelines, this practice has potential for characterization of other types of aqueous and non-aqueous coatings. 1.2 The values in common viscosity units (Krebs Units, KU and Poise, P) are to be regarded as standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D562 Test Method for Consistency of Paints Measuring Krebs Unit (KU) Viscosity Using a Stormer-Type Viscometer D869 Test Method for Evaluating Degree of Settling of Paint D1005 Test Method for Measurement of Dry-Film Thickness of Organic Coatings Using Micrometers D1200 Test Method for Viscosity by Ford Viscosity Cup D2196 Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational (Brookfield type) Viscometer D2805 Test Method for Hiding Power of Paints by Reflectometry D4040 Test Method for Rheological Properties of Paste Printing and Vehicles by the Falling-Rod Viscometer D4062 Test Method for Leveling of Paints by Draw-Down Method D4287 Test Method for High-Shear Viscosity Using a Cone/Plate Viscometer D4400 Test Method for Sag Resistance of Paints Using a Multinotch Applicator D4414 Practice for Measurement of Wet Film Thickness by Notch Gages D4958 Test Method for Comparison of the Brush Drag of Latex Paints Keywords Brookfield-type viscometer; cone/plate-type viscometer; high-shear viscosity; low-shear viscosity; mid-shear viscosity; paints; rheology; Stormer viscometer; viscosity; ICS Code ICS Number Code 17.060 (Measurement of volume, mass, density, viscosity) DOI: 10.1520/D7394 ASTM International is a member of CrossRef. ASTM D7394The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|