Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7382-07 Standard Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer
    Edition: 2007
    $113.57
    Unlimited Users per year

Description of ASTM-D7382 2007

ASTM D7382-07

Historical Standard: ASTM D7382-07 Standard Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer

SUPERSEDED (see Active link, below)




ASTM D7382

1. Scope

1.1 These test methods cover the determination of the maximum dry unit weight and water content range for effective compaction of granular soils. A vibrating hammer is used to impart a surcharge and compactive effort to the soil specimen.

1.2 These test methods apply to soils with up to 35 %, by dry mass, passing a No. 200 (75-m) sieve if the portion passing the No. 40 (425-m) sieve is nonplastic.

1.3 These test methods apply to soils with up to 15 %, by dry mass, passing a No. 200 (75-m) sieve if the portion passing the No. 40 (425-m) sieve exhibits plastic behavior.

1.4 These test methods apply to soils in which 100 %, by dry mass, passes the 2-in. (50-mm) sieve.

1.5 These test methods apply only to soils (materials) that have 30 % or less, by dry mass of their particles retained on the 3/4-in. (19.0-mm) sieve.

Note 1

For relationships between unit weights and water contents of soils with 30 % or less, by dry mass, of material retained on the 3/4-in. (19.0-mm) sieve to unit weights and water contents of the fraction passing the 3/4-in. (19.0-mm) sieve, see Practice D 4718.

1.6 These test methods will typically produce a higher maximum dry density/unit weight for the soils specified in and than that obtained by impact compaction in which a well-defined moisture-density relationship is not apparent. However, for some soils containing more than 15 % fines, the use of impact compaction (Test Methods D 698 or D 1557) may be useful in evaluating what is an appropriate maximum index density/unit weight.

1.7 Two alternative test methods are provided, with the variation being in mold size. The method used shall be as indicated in the specification for the material being tested. If no method is specified, the choice should be based on the maximum particle size of the material.

1.7.1 Method A

Mold

6-in. (152.4-mm) diameter.

Material

Passing 3/4-in. (19.0-mm) sieve and consistent with the requirements of and .

Layers

Three.

Time of Compaction per layer

60 5 s.

1.7.2 Method B

Mold

11-in. (279.4-mm) diameter.

Material

Passing 2-in. (50-mm) sieve and consistent with the requirements of and .

Layers

Three.

Time of Compaction per layer

52 5 s at each of 8 locations.

Note 2

Method A (with the correction procedure of Practice D 4718, if appropriate), has been shown (reference thesis or paper) to provide consistent results with Method B. Therefore, for ease of operations, it is highly recommended to use Method A, unless Method B is required due to soil gradations not meeting Practice D 4718.

Note 3

Results have been found to vary slightly when a material is tested at the same compaction effort in different size molds.

1.7.3 Either method, A or B, can be performed with the material in an oven-dried or wet/saturated state, whichever provides the maximum dry unit weight.

1.8 If the test specimen contains more than 5 % by mass of oversize fraction (coarse fraction) and the material will not be included in the test, corrections must be made to the unit weight and water content of the test specimen or to the appropriate field in-place density test specimen using Practice D 4718.

1.9 This test method causes a minimal amount of degradation (particle breakdown) of the soil. When degradation occurs, typically there is an increase in the maximum unit weight obtained, and comparable test results may not be obtained when different size molds are used to test a given soil. For soils where degradation is suspected, a sieve analysis of the specimen should be performed before and after the compaction test to determine the amount of degradation.

1.10 UnitsThe values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.11 The vibrating hammer test method may be performed in the field or in the laboratory.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

American Association of State Highway and Transportation Officials Standards

M231-95-UL Standard Specification for Weighing Devices Used in the Testing of Materials

ASTM Standards

C127 Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate

C136 Test Method for Sieve Analysis of Fine and Coarse Aggregates

C778 Specification for Sand

D422 Test Method for Particle-Size Analysis of Soils

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))

D854 Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

D1140 Test Methods for Amount of Material in Soils Finer than No. 200 (75-m) Sieve

D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))

D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)

D3282 Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes

D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D4220 Practices for Preserving and Transporting Soil Samples

D4253 Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table

D4254 Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density

D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

D4718 Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles

D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

D6026 Practice for Using Significant Digits in Geotechnical Data

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

E145 Specification for Gravity-Convection and Forced-Ventilation Ovens

IEEE/ASTM SI 10 Standard for Use of the International System of Units (SI): the Modern Metric System


Keywords

density; granular soil; soil compaction; unit weight; vibrating hammer; water content; Granular soil; Vibrating hammer; Water content--soil;


ICS Code

ICS Number Code 13.080.20 (Physical properties of soil)


DOI: 10.1520/D7382-07

ASTM International is a member of CrossRef.


The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X