Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7128-05(2010) Standard Guide for Using the Seismic-Reflection Method for Shallow Subsurface Investigation
    Edition: 2010
    $148.51
    Unlimited Users per year

Description of ASTM-D7128 2010

ASTM D7128-05-Reapproved2010

Historical Standard: Standard Guide for Using the Seismic-Reflection Method for Shallow Subsurface Investigation




ASTM D7128

Scope

1.1 Purpose and Application:

1.1.1 This guide summarizes the technique, equipment, field procedures, data processing, and interpretation methods for the assessment of shallow subsurface conditions using the seismic-reflection method.

1.1.2 Seismic reflection measurements as described in this guide are applicable in mapping shallow subsurface conditions for various uses including geologic (1), geotechnical, hydrogeologic (2), and environmental (3). The seismic-reflection method is used to map, detect, and delineate geologic conditions including the bedrock surface, confining layers (aquitards), faults, lithologic stratigraphy, voids, water table, fracture systems, and layer geometry (folds). The primary application of the seismic-reflection method is the mapping of lateral continuity of lithologic units and, in general, detection of change in acoustic properties in the subsurface.

1.1.3 This guide will focus on the seismic-reflection method as it is applied to the near surface. Near-surface seismic reflection applications are based on the same principles as those used for deeper seismic reflection surveying, but accepted practices can differ in several respects. Near-surface seismic-reflection data are generally high-resolution (dominant frequency above 80 Hz) and image depths from around 6 m to as much as several hundred meters. Investigations shallower than 6 m have occasionally been undertaken, but these should be considered experimental.

1.2 Limitations:

1.2.1 This guide provides an overview of the shallow seismic-reflection method, but it does not address the details of seismic theory, field procedures, data processing, or interpretation of the data. Numerous references are included for that purpose and are considered an essential part of this guide. It is recommended that the user of the seismic-reflection method be familiar with the relevant material in this guide, the references cited in the text, and Guides D420, D653, D2845, D4428/D4428M, Practice D5088, Guides D5608, D5730, D5753, D6235, and D6429.

1.2.2 This guide is limited to two-dimensional (2-D) shallow seismic-reflection measurements made on land. The seismic-reflection method can be adapted for a wide variety of special uses: on land, within a borehole, on water, and in three dimensions (3-D). However, a discussion of these specialized adaptations of reflection measurements is not included in this guide.

1.2.3 This guide provides information to help understand the concepts and application of the seismic-reflection method to a wide range of geotechnical, engineering, and groundwater problems.

1.2.4 The approaches suggested in this guide for the seismic-reflection method are commonly used, widely accepted, and proven; however, other approaches or modifications to the seismic-reflection method that are technically sound may be equally suited.

1.2.5 Technical limitations of the seismic-reflection method are discussed in 5.4.

1.2.6 This guide discusses both compressional (P) and shear (S) wave reflection methods. Where applicable, the distinctions between the two methods will be pointed out in this guide.

1.3 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This guide is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration for a projects many unique aspects. The word Standard in the title of this guide means only that the document has been approved through the ASTM consensus process.

1.4 The values stated in SI units are regarded as standard. The values given in parentheses are inch-pound units, which are provided for information only and are not considered standard.

1.5 Precautions:

1.5.1 It is the responsibility of the user of this guide to follow any precautions within the equipment manufacturers recommendations, establish appropriate health and safety practices, and consider the safety and regulatory implications when explosives or any high-energy (mechanical or chemical) sources are used.

1.5.2 If the method is applied at sites with hazardous materials, operations, or equipment, it is the responsibility of the user of this guide to establish appropriate safety and health practices and determine the applicability of any regulations prior to use.

1.5.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

geophysics; near-surface; seismic reflection; surface geophysics; Subsurface investigations; Seismic-reflection method


ICS Code

ICS Number Code 07.060 (Geology. Meteorology. Hydrology)


DOI: 10.1520/D7128-05R10

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X