FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6708 2016ASTM D6708-16Historical Standard: Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a MaterialASTM D6708Scope 1.1 This practice covers statistical methodology for assessing the expected agreement between two standard test methods that purport to measure the same property of a material, and deciding if a simple linear bias correction can further improve the expected agreement. It is intended for use with results collected from an interlaboratory study meeting the requirement of Practice D6300 or equivalent (for example, ISO 4259). The interlaboratory study must be conducted on at least ten materials that span the intersecting scopes of the test methods, and results must be obtained from at least six laboratories using each method. 1.2 The statistical methodology is based on the premise that a bias correction will not be needed. In the absence of strong statistical evidence that a bias correction would result in better agreement between the two methods, a bias correction is not made. If a bias correction is required, then the parsimony principle is followed whereby a simple correction is to be favored over a more complex one. Note 1: Failure to adhere to the parsimony principle generally results in models that are over-fitted and do not perform well in practice. 1.3 The bias corrections of this practice are limited to a constant correction, proportional correction or a linear (proportional + constant) correction. 1.4 The bias-correction methods of this practice are method symmetric, in the sense that equivalent corrections are obtained regardless of which method is bias-corrected to match the other. 1.5 A methodology is presented for establishing the 95 % confidence limit (designated by this practice as the between methods reproducibility) for the difference between two results where each result is obtained by a different operator using different apparatus and each applying one of the two methods X and Y on identical material, where one of the methods has been appropriately bias-corrected in accordance with this practice. Note 2: In earlier versions of this standard practice, the term “cross-method reproducibility” was used in place of the term “between methods reproducibility.” The change was made because the “between methods reproducibility” term is more intuitive and less confusing. It is important to note that these two terms are synonymous and interchangeable with one another, especially in cases where the “cross-method reproducibility” term was subsequently referenced by name in methods where a D6708 assessment was performed, before the change in terminology in this standard practice was adopted. Note 3: Users are cautioned against applying the between methods reproducibility as calculated from this practice to materials that are significantly different in composition from those actually studied, as the ability of this practice to detect and address sample-specific biases (see 6.8) is dependent on the materials selected for the interlaboratory study. When sample-specific biases are present, the types and ranges of samples may need to be expanded significantly from the minimum of ten as specified in this practice in order to obtain a more comprehensive and reliable 95 % confidence limits for between methods reproducibility that adequately cover the range of sample specific biases for different types of materials. 1.6 This practice is intended for test methods which measure quantitative (numerical) properties of petroleum or petroleum products. 1.7 The statistical methodology outlined in this practice is also applicable for assessing the expected agreement between any two test methods that purport to measure the same property of a material, provided the results are obtained on the same comparison sample set, the standard error associated with each test result is known, the sample set design meets the requirement of this practice, and the statistical degree of freedom of the data set exceeds 30. Keywords ICS Code ICS Number Code 75.080 (Petroleum products in general) DOI: 10.1520/D6708-16 The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|