Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D6708-13 Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
    Edition: 2013
    $113.57
    Unlimited Users per year

Description of ASTM-D6708 2013

ASTM D6708 - 13

Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material

Active Standard ASTM D6708 | Developed by Subcommittee: D02.94

Book of Standards Volume: 05.03




ASTM D6708

Significance and Use

5.1 This practice can be used to determine if a constant, proportional, or linear bias correction can improve the degree of agreement between two methods that purport to measure the same property of a material.

5.2 The bias correction developed in this practice can be applied to a single result ( X ) obtained from one test method (method X ) to obtain a predicted result ( Y ^ ) for the other test method (method Y ).

Note 6 Users are cautioned to ensure that Y ^ is within the scope of method Y before its use.

5.3 The between methods reproducibility established by this practice can be used to construct an interval around Y ^ that would contain the result of test method Y , if it were conducted, with about 95?% confidence.

5.4 This practice can be used to guide commercial agreements and product disposition decisions involving test methods that have been evaluated relative to each other in accordance with this practice.

1. Scope

1.1 This practice covers statistical methodology for assessing the expected agreement between two standard test methods that purport to measure the same property of a material, and deciding if a simple linear bias correction can further improve the expected agreement. It is intended for use with results collected from an interlaboratory study meeting the requirement of Practice D6300 or equivalent (for example, ISO?4259 ). The interlaboratory study must be conducted on at least ten materials that span the intersecting scopes of the test methods, and results must be obtained from at least six laboratories using each method.

1.2 The statistical methodology is based on the premise that a bias correction will not be needed. In the absence of strong statistical evidence that a bias correction would result in better agreement between the two methods, a bias correction is not made. If a bias correction is required, then the parsimony principle is followed whereby a simple correction is to be favored over a more complex one.

Note 1 Failure to adhere to the parsimony principle generally results in models that are over-fitted and do not perform well in practice.

1.3 The bias corrections of this practice are limited to a constant correction, proportional correction or a linear (proportional + constant) correction.

1.4 The bias-correction methods of this practice are method symmetric, in the sense that equivalent corrections are obtained regardless of which method is bias-corrected to match the other.

1.5 A methodology is presented for establishing the 95?% confidence limit (designated by this practice as the between methods reproducibility ) for the difference between two results where each result is obtained by a different operator using different apparatus and each applying one of the two methods X and Y on identical material, where one of the methods has been appropriately bias-corrected in accordance with this practice.

Note 2 In earlier versions of this standard practice, the term cross-method reproducibility was used in place of the term between methods reproducibility. The change was made because the between methods reproducibility term is more intuitive and less confusing. It is important to note that these two terms are synonymous and interchangeable with one another, especially in cases where the cross-method reproducibility term was subsequently referenced by name in methods where a D6708 assessment was performed, before the change in terminology in this standard practice was adopted.
Note 3 Users are cautioned against applying the between methods reproducibility as calculated from this practice to materials that are significantly different in composition from those actually studied, as the ability of this practice to detect and address sample-specific biases (see 6.8 ) is dependent on the materials selected for the interlaboratory study. When sample-specific biases are present, the types and ranges of samples may need to be expanded significantly from the minimum of ten as specified in this practice in order to obtain a more comprehensive and reliable 95?% confidence limits for between methods reproducibility that adequately cover the range of sample specific biases for different types of materials.

1.6 This practice is intended for test methods which measure quantitative (numerical) properties of petroleum or petroleum products.

1.7 The statistical methodology outlined in this practice is also applicable for assessing the expected agreement between any two test methods that purport to measure the same property of a material, provided the results are obtained on the same comparison sample set, the standard error associated with each test result is known, the sample set design meets the requirement of this practice, and the statistical degree of freedom of the data set exceeds 30.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D5580 Test Method for Determination of Benzene, Toluene, Ethylbenzene, p/m-Xylene, o-Xylene, C9 and Heavier Aromatics, and Total Aromatics in Finished Gasoline by Gas Chromatography

D5769 Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry

D6299 Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance

D6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products and Lubricants

ISO Standard

ISO4259 Petroleum Products--Determination and application of precision data in relation to methods of test.

Keywords


ICS Code

ICS Number Code 75.080 (Petroleum products in general)


DOI: 10.1520/D6708

ASTM International is a member of CrossRef.

ASTM D6708

The following editions for this book are also available...

Format Year Publisher Type Title Annual Price
2008
ASTM
Model Standard
$113.57 Buy
2007
ASTM
Model Standard
$113.57 Buy
2006
ASTM
Model Standard
$113.57 Buy
2005
ASTM
Model Standard
$113.57 Buy
2004
ASTM
Model Standard
$113.57 Buy
2001
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$113.57 Buy
2016
ASTM
Model Standard
$113.57 Buy
2016
ASTM
Model Standard
$113.57 Buy
2016
ASTM
Model Standard
$113.57 Buy
2015
ASTM
Model Standard
$113.57 Buy
2001
ASTM
Model Standard
$113.57 Buy
2013
ASTM
Model Standard
$113.57 Buy
2019
ASTM
Model Standard
$113.57 Buy
2019
ASTM
Model Standard
$113.57 Buy
2019
ASTM
Model Standard
$113.57 Buy
2021
ASTM
Model Standard
$113.57 Buy
2024
ASTM
Model Standard
$94.85 Buy
2024
ASTM
Model Standard
$113.57 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,431.66 Buy
VAR
ASTM
[+] $5,835.44 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X