FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6600 2009ASTM D6600 - 00(2009)Standard Practice for Evaluating Test Sensitivity for Rubber Test MethodsActive Standard ASTM D6600 | Developed by Subcommittee: D11.16 Book of Standards Volume: 09.01 ASTM D6600Significance and Use Testing is conducted to make technical decisions on materials, processes, and products. With the continued growth in the available test methods for evaluating scientific and technical properties, a quantitative approach is needed to select test methods that have high (or highest) quality or technical merit. The procedures as defined in this practice may be used for this purpose to make testing as cost effective as possible. One index of test method technical merit and implied sensitivity frequently used in the past has been test method precision. The precision is usually expressed as some multiple of the test measurement standard deviation for a defined testing domain. Although precision is a required quantity for test sensitivity, it is an incomplete characteristic (only one half of the necessary information) since it does not consider the discrimination power for the FP (or constituent) being evaluated. Any attempt to evaluate relative test sensitivity for two different test methods on the basis of test measurement standard deviation ratios or variance ratios, which lack any discrimination power information content, constitutes an invalid quantitative basis for sensitivity, or technical merit evaluation. Coefficient of variation ratios (which are normalized to the mean) may constitute a valid test sensitivity evaluation only under the special condition where the two test methods under comparison are directly proportional or reciprocally related to each other. If the relationship between two test methods is nonlinear or linear with a nonzero intercept, the coefficient of variation ratios are not equivalent to the true test sensitivity as defined in this practice. See discussion of example in X1.1.4. The figure of merit defined by test sensitivity and its various classifications, categories, and types as introduced by this practice permits an authentic quantitative test sensitivity evaluation. 1. Scope 1.1 This practice covers testing to evaluate chemical constituents, chemical and physical properties of compounding materials, and compounded and cured rubbers, which may frequently be conducted by one or more test methods. When more than one test method is available, two questions arise: Which test method has the better (or best) response to or discrimination for the underlying fundamental property being evaluated? and Which test method has the least error? These two characteristics collectively determine one type of technical merit of test methods that may be designated as test sensitivity. 1.2 Although a comprehensive and detailed treatment, as given by this practice, is required for a full appreciation of test sensitivity, a simplified conceptual definition may be given here. Test sensitivity is the ratio of discrimination power for the fundamental property evaluated to the measurement error or uncertainty, expressed as a standard deviation. The greater the discriminating power and the lower the test error, the better is the test sensitivity. Borrowing from the terminology in electronics, this ratio has frequently been called the signal-to-noise ratio; the signal corresponding to the discrimination power and the noise corresponding to the test measurement error. Therefore, this practice describes how test sensitivity, generically defined as the signal-to-noise ratio, may be evaluated for test methods used in the rubber manufacturing industry, which measure typical physical and chemical properties, with exceptions as noted in 1.3. 1.3 This practice does not address the topic of sensitivity for threshold limits or minimum detection limits (MDL) in such applications as ( 1 ) the effect of intentional variations of compounding materials on measured compound properties or ( 2 ) the evaluation of low or trace constituent levels. Minimum detection limits are the subject of separate standards. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.5 The content of this practice is as follows:
ASTM Standards D4483 Practice for Evaluating Precision for Test Method Standards in the Rubber and Carbon Black Manufacturing Industries Keywords absolute test sensitivity; calibration material; reference material; relative test sensitivity; signal-to-noise ratio; test sensitivity; Rubber property analysis; Sensitivity criterion/response; Testing methods; ICS Code ICS Number Code 83.040.01 (Raw materials for rubber and plastics in general) DOI: 10.1520/D6600-00R09 ASTM International is a member of CrossRef. ASTM D6600This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|