FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6512 2014ASTM D6512-07-Reapproved2014Withdrawn Standard: Standard Practice for Interlaboratory Quantitation Estimate (Withdrawn 2023)ASTM D6512Scope 1.1 This practice establishes a uniform standard for computing the interlaboratory quantitation estimate associated with Z % relative standard deviation (referred to herein as IQEZ %), and provides guidance concerning the appropriate use and application. The calculations involved in this practice can be performed with DQCALC, Microsoft Excel-based software available from ASTM.2 1.2 IQEZ % is computed to be the lowest concentration for which a single measurement from a laboratory selected from the population of qualified laboratories represented in an interlaboratory study will have an estimated Z % relative standard deviation (Z % RSD, based on interlaboratory standard deviation), where Z is typically an integer multiple of 10, such as 10, 20, or 30, but Z can be less than 10. The IQE10 % is consistent with the quantitation approaches of Currie (1)3 and Oppenheimer, et al. (2). 1.3 The fundamental assumption of the collaborative study is that the media tested, the concentrations tested, and the protocol followed in the study provide a representative and fair evaluation of the scope and applicability of the test method as written. Properly applied, the IQE procedure ensures that the IQE has the following properties: 1.3.1 Routinely Achievable IQE Value—Most laboratories are able to attain the IQE quantitation performance in routine analyses, using a standard measurement system, at reasonable cost. This property is needed for a quantitation limit to be feasible in practical situations. Representative laboratories must be included in the data to calculate the IQE. 1.3.2 Accounting for Routine Sources of Error—The IQE should realistically include sources of bias and variation that are common to the measurement process. These sources include, but are not limited to: intrinsic instrument noise, some “typical” amount of carryover error; plus differences in laboratories, analysts, sample preparation, and instruments. 1.3.3 Avoidable Sources of Error Excluded—The IQE should realistically exclude avoidable sources of bias and variation; that is, those sources that can reasonably be avoided in routine field measurements. Avoidable sources would include, but are not limited to: modifications to the sample; modifications to the measurement procedure; modifications to the measurement equipment of the validated method, and gross and easily discernible transcription errors, provided there was a way to detect and either correct or eliminate them. 1.4 The IQE applies to measurement methods for which calibration error is minor relative to other sources, such as when the dominant source of variation is one of the following: 1.4.1 Sample Preparation, and calibration standards do not have to go through sample preparation. 1.4.2 Differences in Analysts, and analysts have little opportunity to affect calibration results (as is the case with automated calibration). 1.4.3 Differences in Laboratories (for whatever reasons), perhaps difficult to identify and eliminate. 1.4.4 Differences in Instruments (measurement equipment), such as differences in manufacturer, model, hardware, electronics, sampling rate, chemical processing rate, integration time, software algorithms, internal signal processing and thresholds, effective sample volume, and contamination level. 1.5 Data Quality Objectives—Typically, one would compute the lowest % RSD possible for any given dataset for a particular method. Thus, if possible, IQE10 % would be computed. If the data indicated that the method was too noisy, one might have to compute instead IQE20 %, or possibly IQE30 %. In any case, an IQE with a higher % RSD level (such as IQE50 %) would not be considered, though an IQE with RSD <10 % (such as IQE1 % ) would be acceptable. The appropriate level of % RSD may depend on the intended use of the IQE. Keywords critical limit; matrix effects; precision; quantitation; quantitation limit ICS Code ICS Number Code 03.120.20 (Product and company certification. Conformity assessment) DOI: 10.1520/D6512-07R14 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|