FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6467 2021ASTM D6467-21e1Active Standard: Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Fine-Grained SoilsASTM D6467Scope 1.1 Fine-grained soils in this Test Method are restricted to soils containing no more than 15 % fine sand (100 % passing the 425 μm (No. 40) sieve and no more than 15 % retained on the 75 μm (No. 200) sieve). 1.2 This test method provides a procedure for performing a torsional ring shear test under a drained condition to determine the residual shear strength of fine-grained soils. This test method is performed by shearing a reconstituted, overconsolidated, presheared specimen at a controlled displacement rate until the constant drained shear resistance is established on a single shear surface determined by the configuration of the apparatus. 1.3 In this test, the specimen rotates in one direction until the constant or residual shear resistance is established. The amount of rotation is converted to displacement using the average radius of the specimen and multiplying it by numbers of degrees traveled and 0.0174. 1.4 An intact specimen or a specimen with a natural shear surface can be used for testing. However, obtaining a natural slip surface specimen, determining the direction of field shearing, and trimming and aligning the usually non-horizontal shear surface in the ring shear apparatus is difficult. As a result, this test method focuses on the use of a reconstituted specimen to determine the residual strength. An unlimited amount of continuous shear displacement can be achieved to obtain a residual strength condition in a ring shear device. 1.5 A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because the height of the shear zone unknown, so an accurate or representative shear strain cannot be determined. 1.6 The selection of effective normal stresses and determination of the shear strength parameters for design analyses are the responsibility of the professional or office requesting the test. Generally, three or more effective normal stresses are applied to a test specimen in a multi-stage test or a new specimen can be used for each effective normal stress to determine the drained residual failure envelope. 1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. The values given in parentheses are mathematical conversions to inch-pound units. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard. 1.8 All measured and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard. 1.8.1 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords consolidated; drained test conditions; multi-stage test; reconstituted specimens; residual shear strength; ring-shear test; single stage test; torsional ring shear test ; ICS Code ICS Number Code 13.080.20 (Physical properties of soil) DOI: 10.1520/D6467-21E01 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|