FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6467 2013ASTM D6467 - 13Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive SoilsActive Standard ASTM D6467 | Developed by Subcommittee: D18.05 Book of Standards Volume: 04.09 ASTM D6467Significance and Use 5.1 The ring shear test is suited to the relatively rapid determination of drained residual shear strength because of the short drainage path through the thin specimen, and the capability of testing one specimen under different normal stresses to quickly obtain a shear strength envelope. 5.2 The test results are primarily applicable to assess the shear strength in slopes that contain a preexisting shear surface, such as old landslides, soliflucted slopes, and sheared bedding planes, joints, or faults. 5.3 The apparatus allows a reconstituted specimen to be overconsolidated and presheared prior to drained shearing. This simulates the field conditions that lead to a preexisting shear surface along which the drained residual strength can be mobilized. 5.4 The ring shear device keeps the cross-sectional area of the shear surface constant during shear and shears the specimen continuously in one rotational direction for any magnitude of displacement. This allows clay particles to become oriented parallel to the direction of shear and a residual strength condition to develop.
Note 1 Notwithstanding the statements on precision and bias contained in this test method: The precision of this
test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are
generally considered capable of competent testing. Users of this test method are cautioned that compliance with Practice D3740 does not ensure reliable testing. Reliable testing depends on
several factors; Practice D3740 provides a means of evaluating some of those factors.
1. Scope 1.1 This test method provides a procedure for performing a torsional ring shear test under a drained condition to determine the residual shear strength of cohesive soils. An intact specimen can be used for testing. However, obtaining a natural slip surface specimen, determining the direction of field shearing, and trimming and aligning the usually non-horizontal shear surface in the ring shear apparatus is difficult. As a result, this test method focuses on the use of a reconstituted specimen to measure the residual strength. This test method is performed by deforming a presheared, reconstituted specimen at a controlled displacement rate until the constant drained shear resistance is offered on a single shear plane determined by the configuration of the apparatus. An unlimited amount of continuous shear displacement can be achieved to obtain a residual strength condition. Generally, three or more normal stresses are applied to a test specimen to determine the drained residual failure envelope. A separate test specimen may be used for each normal stress. 1.2 A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because soil extrusion and volume change prevents defining the height needed in the shear strain calculations. As a result, shear strain cannot be calculated but shear displacement can be calculated. 1.3 The selection of normal stresses and determination of the shear strength envelope for design analyses and the criteria to interpret and evaluate the test results are the responsibility of the engineer or office requesting the test. 1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. 1.5 All measured and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 . 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D422 Test Method for Particle-Size Analysis of Soils D653 Terminology Relating to Soil, Rock, and Contained Fluids D854 Test Methods for Specific Gravity of Soil Solids by Water Pycnometer D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass D2435 Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) D3080 Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils D6026 Practice for Using Significant Digits in Geotechnical Data Keywords consolidated; drained test conditions; Mohr-Coulomb strength envelope; reconstituted specimens; residual shear strength; ring-shear test; torsional ring shear test ; ICS Code ICS Number Code 13.080.20 (Physical properties of soil) DOI: 10.1520/D6467 ASTM International is a member of CrossRef. ASTM D6467The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|