Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D6246-08(2013) Standard Practice for Evaluating the Performance of Diffusive Samplers
    Edition: 2013
    $103.58
    Unlimited Users per year

Description of ASTM-D6246 2013

ASTM D6246 - 08(2013)

Standard Practice for Evaluating the Performance of Diffusive Samplers

Active Standard ASTM D6246 | Developed by Subcommittee: D22.04

Book of Standards Volume: 11.07




ASTM D6246

Significance and Use

5.1 Gas or vapor sampling is often accomplished by actively pumping air through a collection medium such as activated charcoal. Problems associated with a pumpinconvenience, inaccuracy, and expenseare inextricable from this type of sampling. The alternative covered by this practice is to use diffusion for moving the compound of interest onto the collection medium. This approach to sampling is attractive because of the convenience of use and low total monitoring cost.

5.2 However, previous studies have found significant problems with the accuracy of some samplers. Therefore, although diffusive samplers may provide a plethora of data, inaccuracies and misuse of diffusive samplers may yet affect research studies. Furthermore, worker protections may be based on faulty assumptions. The aim of this practice is to counter the uncertainties in diffusive sampling through achieving a broadly accepted set of performance tests and acceptance criteria for proving the efficacy of any given diffusive sampler intended for use.

1. Scope

1.1 This practice covers the evaluation of the performance of diffusive samplers of gases and vapors for use over sampling periods from 4 to 12 h and for wind speeds less than 0.5 m/s. Such sampling periods and wind speeds are the most common in the indoor workplace setting. This practice does not apply to static or area sampling in wind speeds less than 0.1 m/s, when diffusion outside the sampler may dominate needed convection from the ambient air to the vicinity of the sampler. Given a suitable exposure chamber, the practice can be extended to cover sampler use for other sampling periods and conditions. The aim is to provide a concise set of experiments for classifying samplers primarily in accordance with a single sampler accuracy figure. Accuracy is defined ( 3.2.1 ) in this standard so as to take into account both imprecision and uncorrected bias. Accuracy estimates refer to conditions of sampler use which are normally expected in a workplace setting. These conditions may be characterized by the temperature, atmospheric pressure, humidity, and ambient wind speed, none of which may be constant or accurately known when the sampler is used in the field. Futhermore, the accuracy accounts for the effects of diffusive loss of analyte on the estimation of time-weighted averages of concentrations which may not be constant in time. Aside from accuracy, the samplers are tested for compliance with the manufacturer's stated limits on capacity, possibly in the presence of interfering compounds.

1.2 This practice is an extension of previous research on diffusive samplers ( 1 - 14 ) 2 as well as Practices D4597 , D4598 , D4599 , and MDHS 27 . An essential advance here is the estimation of sampler accuracy under actual conditions of use. Futhermore, the costs of sampler evaluation are reduced.

1.3 Knowledge gained from similar analytes expedites sampler evaluation. For example, interpolation of data characterizing the sampling of analytes at separated points of a homologous series of compounds is recommended. At present the procedure of ( 9 ) is suggested. Following evaluation of a sampler in use at a single homologous series member according to the present practice, higher molecular weight members would receive partial validations considering sampling rate, capacity, analytical recovery, and interferences. The test for diffusive analyte loss can be omitted if the effect is found negligible for a given sampler or analyte series.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D1356 Terminology Relating to Sampling and Analysis of Atmospheres

D4597 Practice for Sampling Workplace Atmospheres to Collect Gases or Vapors with Solid Sorbent Diffusive Samplers

D4598 Practice for Sampling Workplace Atmospheres to Collect Gases or Vapors with Liquid Sorbent Diffusional Samplers

D4599 Practice for Measuring the Concentration of Toxic Gases or Vapors Using Length-of-Stain Dosimeters

International Standards

MDHS80 Volatile organic compounds in air, Health and Safety Laboratory, United Kingdom

Keywords

accuracy; air monitoring; bias; concentration; diffusive; evaluation; gases; passive; performance; precision; sampling and analysis; samplers; tests; uncertainty; vapors; workplace atmospheres;


ICS Code

ICS Number Code 13.040.30 (Workplace atmospheres)


DOI: 10.1520/D6246-08R13

ASTM International is a member of CrossRef.

ASTM D6246

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,933.17 Buy
VAR
ASTM
[+] $1,164.67 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X