FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6160 2013ASTM D6160-98-Reapproved2013Historical Standard: Standard Test Method for Determination of Polychlorinated Biphenyls (PCBs) in Waste Materials by Gas ChromatographyASTM D6160Scope 1.1 This test method2 covers a two-tiered analytical approach to PCB screening and quantitation of liquid and solid wastes, such as oils, sludges, aqueous solutions, and other waste matrices. 1.2 Tier I is designed to screen samples rapidly for the presence of PCBs. 1.3 Tier II is used to determine the concentration of PCBs, typically in the range of from 2 to 50 mg/kg. PCB concentrations greater than 50 mg/kg are determined through analysis of sample dilutions. 1.4 This is a pattern recognition approach, which does not take into account individual congeners that might occur, such as in reaction by-products. This test method describes the use of Aroclors3 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268, as reference standards, but others could also be included. Aroclors 1016 and 1242 have similar capillary gas chromatography (GC) patterns. Interferences or weathering are especially problematic with Aroclors 1016, 1232, and 1242 and may make distinction between the three difficult. 1.5 This test method provides sample clean up and instrumental conditions necessary for the determination of Aroclors. Gas chromatography (GC) using capillary column separation technique and electron capture detector (ECD) are described. Other detectors, such as atomic emission detector (AED) and mass spectrometry (MS), may be used if sufficient performance (for example, sensitivity) is demonstrated. Further details about the use of GC and ECD are provided in Practices E355, E697, and E1510. 1.6 Quantitative results are reported on the dry weights of waste samples. 1.7 Quantification limits will vary depending on the type of waste stream being analyzed. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulator limitations prior to use. Keywords gas chromatography; GC/ECD; PCBs; polychlorinated biphenyls ICS Code ICS Number Code 13.030.30 (Special wastes) DOI: 10.1520/D6160-98R13 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|