FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D5126 2010ASTM D5126/D5126M-90-e1-Reapproved2010Historical Standard: Standard Guide for Comparison of Field Methods for Determining Hydraulic Conductivity in Vadose ZoneASTM D5126/D5126MScope 1.1 This guide covers a review of the test methods for determining hydraulic conductivity in unsaturated soils and sediments. Test methods for determining both field-saturated and unsaturated hydraulic conductivity are described. 1.2 Measurement of hydraulic conductivity in the field is used for estimating the rate of water movement through clay liners to determine if they are a barrier to water flux, for characterizing water movement below waste disposal sites to predict contaminant movement, and to measure infiltration and drainage in soils and sediment for a variety of applications. Test methods are needed for measuring hydraulic conductivity ranging from 1 × 10−2 to 1 × 10−8 cm/s, for both surface and subsurface layers, and for both field-saturated and unsaturated flow. 1.3 For these field test methods a distinction must be made between “saturated” (Ks) and “field-saturated” (Kfs) hydraulic conductivity. True saturated conditions seldom occur in the vadose zone except where impermeable layers result in the presence of perched water tables. During infiltration events or in the event of a leak from a lined pond, a “field-saturated” condition develops. True saturation does not occur due to entrapped air (1). The entrapped air prevents water from moving in air-filled pores that, in turn, may reduce the hydraulic conductivity measured in the field by as much as a factor of two compared to conditions when trapped air is not present (2). Field test methods should simulate the “field-saturated” condition. 1.4 Field test methods commonly used to determine field-saturated hydraulic conductivity include various double-ring infiltrometer test methods, air-entry permeameter test methods, and borehole permeameter tests. Many empirical test methods are used for calculating hydraulic conductivity from data obtained with each test method. A general description of each test method and special characteristics affecting applicability is provided. 1.5 Field test methods used to determine unsaturated hydraulic conductivity in the field include direct measurement techniques and various estimation methods. Direct measurement techniques for determining unsaturated hydraulic conductivity include the instantaneous profile (IP) test method and the gypsum crust method. Estimation techniques have been developed using borehole permeameter data and using data obtained from desorption curves (a curve relating water content to matric potential). 1.6 The values stated in either SI units or inch-pound units [presented in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.6.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.8 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process. Keywords air-entry permeameter; air-entry value; borehole permeameter; hydraulic conductivity; infiltrometer; vadose zone monitoring; Single ring infiltrometers; Soil; Unsaturated hydraulic conductivity; Vadose zone monitoring; Air entry permeameter; Borehole permeameter methods; Comparison techniques--soil/related environments; Contamination--soil; Crust method; Double-ring infiltrometers; Double-tube method; Field investigations; Field-saturated hydraulic conductivity; Field testing--ground water/aquifers; Flow and flow rate--soil/rock/related materials; Gypsum crust method; Hydraulic conductivity/transmissivity; Infiltrometers; Instantaneous profile (IP) method; Irrigation management; Irrigation piping; Landfill; Percolation; Permeameters; Saturated hydraulic conductivity ICS Code ICS Number Code 07.060 (Geology. Meteorology. Hydrology) DOI: 10.1520/D5126_D5126M-90R10E01 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|