ASTM D3764-06e1
Historical Standard: ASTM D3764-06e1 Standard Practice for Validation of the Performance of Process Stream Analyzer Systems
SUPERSEDED (see Active link, below)
ASTM D3764
1. Scope
1.1 This practice describes procedures and methodologies based on the statistical principles of Practice D 6708 to validate whether the degree of agreement between the results produced by a total analyzer system (or its subsystem), versus the results produced by an independent test method that purports to measure the same property, meets user-specified requirements. This is a performance-based validation, to be conducted using a set of materials that are not used a priori in the development of any correlation between the two measurement systems under investigation. A result from the independent test method is herein referred to as a Primary Test Method Result (PTMR).
1.2 This practice assumes any correlation necessary to mitigate systemic biases between the analyzer system and PTM have been applied to the analyzer results.
1.3 This practice requires that both the primary method against which the analyzer is compared to, and the analyzer system under investigation, are in statistical control. Practices described in Practice D 6299 should be used to ensure this condition is met.
1.4 This practice applies if the process stream analyzer system and the primary test method are based on the same measurement principle(s), or, if the process stream analyzer system uses a direct and well-understood measurement principle that is similar to the measurement principle of the primary test method. This practice also applies if the process stream analyzer system uses a different measurement technology from the primary test method, provided that the calibration protocol for the direct output of the analyzer does not require use of the PTMRs (see Case 1 in Note 1).
1.5 This practice does not apply if the process stream analyzer system utilizes an indirect or mathematically modeled measurement principle such as chemometric or multivariate analysis techniques where PTMRs are required for the chemometric or multivariate model development. Users should refer to Practice D 6122 for detailed validation procedures for these types of analyzer systems (see Case 2 in ).
Note 0For example, for the measurement of benzene in spark ignition fuels, comparison of a Mid-Infrared process analyzer system based on Test Method D 6277 to a Test Method D 3606 gas chromatography primary test method would be considered Case 1, and this practice would apply. For each sample, the Mid-Infrared spectrum is converted into a single analyzer result using methodology (Test Method D 6277) that is independent of the primary test method (Test Method D 3606). However, when the same analyzer uses a multivariate model to correlate the measured Mid-Infrared spectrum to Test Method D 3606 reference values using the methodology of Practice E 1655, it is considered Case 2 and Practice D 6122 applies. In this case 2 example, the direct output of the analyzer is the spectrum, and the conversion of this multivariate output to an analyzer result require use of Practice D 6122, hence it is not independent of the primary test method.
1.6 Performance Validation is conducted by calculating the precision and bias of the differences between results from the analyzer system (or subsystem) after the application of any necessary correlation, (such results are herein referred to as Predicted Primary Test Method Results (PPTMRs)), versus the PTMRs for the same sample set. Results used in the calculation are for samples that are not used in the development of the correlation. The calculated precision and bias are statistically compared to user-specified requirements for the analyzer system application.
1.6.1 For analyzers used in product release or product quality certification applications, the precision and bias requirement for the degree of agreement are typically based on the site or published precision of the Primary Test Method.
Note 2In most applications of this type, the PTM is the specification-cited test method.
1.6.2 This practice does not describe procedures for establishing precision and bias requirements for analyzer system applications. Such requirements must be based on the criticality of the results to the intended business application and on contractual and regulatory requirements. The user must establish precision and bias requirements prior to initiating the validation procedures described herein.
1.7 Two procedures for validation are described: the line sample procedure and the validation reference material (VRM) injection procedure.
1.8 Only the analyzer system or subsystem downstream of the VRM injection point or the line sample extraction point is being validated by this practice.
1.9 The line sample procedure is limited to applications where material can be safely withdrawn from the sampling point of the analyzer unit without significantly altering the property of interest.
1.10 Validation information obtained in the application of this practice is applicable only to the type and property range of the materials used to perform the validation.
1.11 Two types of validation are described: General Validation, and Level Specific Validation. These are typically conducted at installation or after major maintenance once the system mechanical fitness-for-use has been established.
1.11.1 General Validation is based on the statistical principles and methodology of Practice D 6708. In most cases, General Validation is preferred, but may not always be possible if the variation in validation materials is insufficient. General Validation will validate analyzer operation over a wider operating range than Level Specific Validation.
1.11.2 When the variation in available validation materials is insufficient to satisfy the requirements of Practice D 6708, a Level Specific Validation is done to validate analyzer operation over a limited range.
1.11.3 The validation outcome are considered valid only within the range covered by the validation material Data from several different Validations (general or level-specific) can potentially be combined for use in a General Validation.
1.12 Procedures for the continual validation of system performance are described. These procedures are typically applied at a frequency commensurate with the criticality of the application.
1.13 This practice does not address procedures for diagnosing causes of validation failure.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
D1265 Practice for Sampling Liquefied Petroleum (LP) Gases, Manual Method
D3606 Test Method for Determination of Benzene and Toluene in Finished Motor and Aviation Gasoline by Gas Chromatography
D4057 Practice for Manual Sampling of Petroleum and Petroleum Products
D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products
D5842 Practice for Sampling and Handling of Fuels for Volatility Measurement
D6122 Practice for Validation of the Performance of Multivariate Online, At-Line, and Laboratory Infrared Spectrophotometer Based Analyzer Systems
D6277 Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy
D6299 Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance
D6708 Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
E456 Terminology Relating to Quality and Statistics
E1655 Practices for Infrared Multivariate Quantitative Analysis
F307 Practice for Sampling Pressurized Gas for Gas Analysis
Keywords
analyzer; process stream analyzer; validation;
ICS Code
ICS Number Code 17.120.10 (Flow in closed conduits)
DOI: 10.1520/D3764-06E01
ASTM International is a member of CrossRef.