Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(95090)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D150-11 Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation
    Edition: 2011
    $113.57
    Unlimited Users per year

Description of ASTM-D150 2011

ASTM D150 - 11

Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation

Active Standard ASTM D150 | Developed by Subcommittee: D09.12

Book of Standards Volume: 10.01




ASTM D150

Significance and Use

Permittivity Insulating materials are used in general in two distinct ways, ( 1 ) to support and insulate components of an electrical network from each other and from ground, and ( 2 ) to function as the dielectric of a capacitor. For the first use, it is generally desirable to have the capacitance of the support as small as possible, consistent with acceptable mechanical, chemical, and heat-resisting properties. A low value of permittivity is thus desirable. For the second use, it is desirable to have a high value of permittivity, so that the capacitor is able to be physically as small as possible. Intermediate values of permittivity are sometimes used for grading stresses at the edge or end of a conductor to minimize ac corona. Factors affecting permittivity are discussed in Appendix X3.

AC Loss For both cases (as electrical insulation and as capacitor dielectric) the ac loss generally needs to be small, both in order to reduce the heating of the material and to minimize its effect on the rest of the network. In high frequency applications, a low value of loss index is particularly desirable, since for a given value of loss index, the dielectric loss increases directly with frequency. In certain dielectric configurations such as are used in terminating bushings and cables for test, an increased loss, usually obtained from increased conductivity, is sometimes introduced to control the voltage gradient. In comparisons of materials having approximately the same permittivity or in the use of any material under such conditions that its permittivity remains essentially constant, it is potentially useful to consider also dissipation factor, power factor, phase angle, or loss angle. Factors affecting ac loss are discussed in Appendix X3.

Correlation When adequate correlating data are available, dissipation factor or power factor are useful to indicate the characteristics of a material in other respects such as dielectric breakdown, moisture content, degree of cure, and deterioration from any cause. However, it is possible that deterioration due to thermal aging will not affect dissipation factor unless the material is subsequently exposed to moisture. While the initial value of dissipation factor is important, the change in dissipation factor with aging is often much more significant.

1. Scope

1.1 These test methods cover the determination of relative permittivity, dissipation factor, loss index, power factor, phase angle, and loss angle of specimens of solid electrical insulating materials when the standards used are lumped impedances. The frequency range addressed extends from less than 1 Hz to several hundred megahertz.

Note 1In common usage, the word relative is frequently dropped.

1.2 These test methods provide general information on a variety of electrodes, apparatus, and measurement techniques. A reader interested in issues associated with a specific material needs to consult ASTM standards or other documents directly applicable to the material to be tested. ,

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 7.2.6.1 and 10.2.1.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D374 Test Methods for Thickness of Solid Electrical Insulation

D618 Practice for Conditioning Plastics for Testing

D1082 Test Method for Dissipation Factor and Permittivity (Dielectric Constant) of Mica

D1531 Test Methods for Relative Permittivity (Dielectric Constant) and Dissipation Factor by Fluid Displacement Procedures

D1711 Terminology Relating to Electrical Insulation

D5032 Practice for Maintaining Constant Relative Humidity by Means of Aqueous Glycerin Solutions

E104 Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions

E197 Specification for Enclosures and Servicing Units for Tests Above and Below Room Temperature


Keywords

ac loss; capacitance: parallel, series, fringing, stray; conductance; contacting electrodes; dielectric; dielectric constant; dissipation factor; electrical insulating material; electrode; fluid displacement; frequency; fringing capacitance; guarded electrode; Hz; loss angle; loss factor; loss tangent; non-contacting electrodes; permittivity; phase angle; phase defect angle; power factor; Q; quality factor; reactance: parallel, series; relative permittivity; resistance: parallel, series; tan (delta); thickness;


ICS Code

ICS Number Code 29.035.01 (Insulating materials in general)


DOI: 10.1520/D0150-11

ASTM International is a member of CrossRef.

ASTM D150

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $759.66 Buy
VAR
ASTM
[+] $2,452.26 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X