Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1940-24e1 Standard Test Method for Critical Mode I Interlaminar Strain Energy Release Rate (GIc) of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures
    Edition: 2024
    $123.55
    Unlimited Users per year

Description of ASTM-C1940 2024

ASTM C1940-24e1

Active Standard: Standard Test Method for Critical Mode I Interlaminar Strain Energy Release Rate (GIc) of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures




ASTM C1940

Scope

1.1 This test method describes the experimental methods and procedures for the determination of the critical mode I interlaminar strain energy release rate of continuous fiber- reinforced ceramic matrix composite (CMC) materials in terms of GIc. This property is also sometimes described as the mode I fracture toughness or the mode I fracture resistance.

1.2 This test method applies primarily to ceramic matrix composite materials with a 2-D laminate structure, consisting of lay-ups of continuous ceramic fibers, in unidirectional tape or 2-D woven fabric architectures, within a brittle ceramic matrix.

1.3 This test method determines the elastic strain energy released per unit of new surface area created as a delamination grows at the interlaminar interface between two lamina or plies. The term delamination is used in this test method to specifically refer to this type of growth, while the term crack is a more general term that can also refer to matrix cracking, intralaminar delamination growth, or fiber fracture.

1.4 This test method uses a double cantilever beam (DCB) specimen to determine the critical mode I interlaminar strain energy release rate (GIc). A DCB test method has been standardized for polymer matrix composites (PMCs) under Test Method D5528. This test method addresses a similar procedure, but with modifications to account for the different physical properties, reinforcement architectures, stress-strain response, and failure mechanisms of CMCs compared to PMCs.

1.5 This test is written for ambient temperature and atmospheric test conditions, but the test method can also be used for elevated temperature or environmental exposure testing with the use of an appropriate environmental test chamber, measurement equipment for controlling and measuring the chamber temperature, humidity, and atmosphere, high temperature gripping fixtures, and modified equipment for measuring delamination growth.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6.1 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

ceramic matrix composite; critical strain energy release rate; double cantilever beam; fracture resistance; fracture toughness; interlaminar delamination; mode I;


ICS Code

ICS Number Code 81.060.30 (Advanced ceramics)


DOI: 10.1520/C1940-24E01

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X