ASTM C1617-05
Historical Standard: ASTM C1617-05 Standard Practice for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Metals
SUPERSEDED (see Active link, below)
ASTM C1617
1. Scope
1.1 This practice covers procedures for a quantitative accelerated laboratory evaluation of the influence of extraction solutions containing ions leached from thermal insulation on the aqueous corrosion of metals. The primary intent of the practice is for use with thermal insulation and associated materials that contribute to, or alternatively inhibit, the aqueous corrosion of different types and grades of metals due to soluble ions that are leached by water from within the insulation. The quantitative evaluation criteria are Mass Loss Corrosion Rate (MLCR) determined from the weight loss due to corrosion of exposed metal coupons after they are cleaned.
1.2 The insulation extraction solutions prepared for use in the test can be altered by the addition of corrosive ions to the solutions to simulate contamination from an external source. Ions expected to provide corrosion inhibition can be added to investigate their inhibitory effect.
1.3 Prepared laboratory standard solutions are used as reference solutions and controls, to provide a means of calibration and comparison. See Fig 1.
1.4 Other liquids can be tested for their potential corrosiveness including cooling tower water, boiler feed, and chemical stocks. Added chemical inhibitors or protective coatings applied to the metal can also be evaluated using the general guidelines of the practice.
1.5 This practice cannot cover all possible field conditions that contribute to aqueous corrosion. The intent is to provide an accelerated means to obtain a non-subjective numeric value for judging the potential contribution to the corrosion of metals that can come from ions contained in thermal insulation materials or other experimental solutions. The calculated numeric value is the mass loss corrosion rate. This calculation is based on general corrosion spread equally over the test duration and the exposed area of the experimental cells created for the test. Corrosion found in field situations and this accelerated test also involves pitting and edge effects and the rate changes over time.
1.6 The measurement values stated in inch-pound units are to be regarded as standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
A53/A53M Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
A105/A105M Specification for Carbon Steel Forgings for Piping Applications
C168 Terminology Relating to Thermal Insulation
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
C665 Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing
C692 Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel
C739 Specification for Cellulosic Fiber Loose-Fill Thermal Insulation
C795 Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel
C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions
D609 Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint, Varnish, Conversion Coatings, and Related Coating Products
G1 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
G16 Guide for Applying Statistics to Analysis of Corrosion Data
G31 Guide for Laboratory Immersion Corrosion Testing of Metals
G46 Guide for Examination and Evaluation of Pitting Corrosion
Keywords
chloride; corrosion; corrosion under insulation; inhibition; metal; protective coatings; steel; thermal insulation; Aqueous corrosion testing; Corrosion; Corrosion under insulation; Inhibitors; Mass loss corrosion rate (MLCR); Soluble chloride ion; Thermal insulation;
ICS Code
ICS Number Code 77.060 (Corrosion of metals)
DOI: 10.1520/C1617-05
ASTM International is a member of CrossRef.