Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6732)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1468-13 Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
    Edition: 2013
    $113.57
    Unlimited Users per year

Description of ASTM-C1468 2013

ASTM C1468 - 13

Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature

Active Standard ASTM C1468 | Developed by Subcommittee: C28.07

Book of Standards Volume: 15.01




ASTM C1468

Significance and Use

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.

4.2 Continuous fiber-reinforced ceramic matrix composites generally are characterized by fine grain sized (<50 ?m) glass or ceramic matrices and ceramic fiber reinforcements. CFCCs are candidate materials for high-temperature structural applications requiring high degrees of corrosion and oxidation resistance, wear resistance, and inherent damage tolerance, that is, toughness. In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less-demanding applications. Although shear test methods are used to evaluate shear interlaminar strength (? ZX , ? ZY ) in advanced ceramics, there is significant difficulty in test specimen machining and testing. Improperly prepared notches can produce nonuniform stress distribution in the shear test specimens and can lead to ambiguity of interpretation of strength results. In addition, these shear test specimens also rarely produce a gage section that is in a state of pure shear. Uniaxially-forced transthickness tensile strength tests measure the tensile interlaminar strength avoid the complications listed above, and provide information on mechanical behavior and strength for a uniformly stressed material. The ultimate strength value measured is not a direct measure of the matrix strength, but a combination of the strength of the matrix and the level of bonding between the fiber, fiber/matrix interphase, and the matrix.

4.3 CFCCs tested in a transthickness tensile test may fail from a single dominant flaw or from a cumulative damage process; therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially-forceed transthickness tensile test may be a significant factor in determining the ultimate strength of CFCCs. The probabilistic nature of the strength distributions of the brittle matrices of CFCCs requires a sufficient number of test specimens at each testing condition for statistical analysis and design, with guidelines for test specimen size and sufficient numbers provided in this test method. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that strengths obtained using other recommended test specimens with different volumes and areas may vary due to these volume differences.

4.4 The results of transthickness tensile tests of test specimens fabricated to standardized dimensions from a particular material, or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.

4.5 For quality control purposes, results derived from standardized transthickness tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.

4.6 The strength of CFCCs is dependent on their inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or a combination thereof. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.

1. Scope

1.1 This test method covers the determination of transthickness tensile strength under monotonic uniaxial forcing of continuous fiber-reinforced ceramics (CFCC) at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries, test fixtures, data collection and reporting procedure. In general, round or square test specimens are tensile tested in the direction normal to the thickness by bonding appropriate hardware to the samples and performing the test. For a Cartesian coordinate system, the x -axis and the y -axis are in the plane of the test specimen. The transthickness direction is normal to the plane and is labeled the z -axis for this test method. For CFCCs, the plane of the test specimen normally contains the larger of the three dimensions and is parallel to the fiber layers for uni-directional, bi-directional, and woven composites. Note that transthickness tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial forcing where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.

1.2 This test method is intended primarily for use with all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1-D), bidirectional (2-D), woven, and tridirectional (3-D). In addition, this test method also may be used with glass (amorphous) matrix composites with 1-D, 2-D, and 3-D continuous fiber reinforcement. This test method does not address directly discontinuous fiber-reinforced, whisker-reinforced or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. It should be noted that 3-D architectures with a high volume fraction of fibers in the z direction may be difficult to test successfully.

1.3 Values are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 .

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Additional recommendations are provided in 6.7 and Section 7 .


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C1145 Terminology of Advanced Ceramics

C1239 Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics

C1275 Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature

D3878 Terminology for Composite Materials

E4 Practices for Force Verification of Testing Machines

E6 Terminology Relating to Methods of Mechanical Testing

E337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures)

E1012 Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application


Keywords

ceramic matrix composite; CFCC; transthickness tension;


ICS Code

ICS Number Code 81.060.30 (Advanced ceramics)


DOI: 10.1520/C1468-13

ASTM International is a member of CrossRef.

ASTM C1468

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $7,461.55 Buy
VAR
ASTM
[+] $1,011.53 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X