FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C1337 2010ASTM C1337 - 10Standard Test Method for Creep and Creep Rupture of Continuous Fiber-Reinforced Advanced Ceramics Under Tensile Loading at Elevated TemperaturesActive Standard ASTM C1337 | Developed by Subcommittee: C28.07 Book of Standards Volume: 15.01 ASTM C1337Significance and Use This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation. Continuous fiber-reinforced ceramic matrix composites are candidate materials for structural applications requiring high degrees of wear and corrosion resistance and toughness at high temperatures. Creep tests measure the time-dependent deformation of a material under constant load at a given temperature. Creep rupture tests provide a measure of the life of the material when subjected to constant mechanical loading at elevated temperatures. In selecting materials and designing parts for service at elevated temperatures, the type of test data used will depend on the criteria for load-carrying capability which best defines the service usefulness of the material. Creep and creep rupture tests provide information on the time-dependent deformation and on the time-of-failure of materials subjected to uniaxial tensile stresses at elevated temperatures. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) which may be influenced by testing mode, testing rate, processing or alloying effects, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth. It is noted that ceramic materials typically creep more rapidly in tension than in compression. Therefore, creep data for design and life prediction should be obtained in both tension and compression. The results of tensile creep and tensile creep rupture tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the creep deformation and creep rupture properties of the entire, full-size end product or its in-service behavior in different environments or at various elevated temperatures. For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments. 1. Scope 1.1 This test method covers the determination of the time-dependent deformation and time-to-rupture of continuous fiber-reinforced ceramic composites under constant tensile loading at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries. In addition, test specimen fabrication methods, allowable bending, temperature measurements, temperature control, data collection, and reporting procedures are addressed. 1.2 This test method is intended primarily for use with all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1-D), bidirectional (2-D), and tridirectional (3-D). In addition, this test method may also be used with glass matrix composites with 1-D, 2-D, and 3-D continuous fiber reinforcement. This test method does not address directly discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. 1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Hazard statements are noted in 7.1 and 7.2.
ASTM Standards C1145 Terminology of Advanced Ceramics C1275 Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature D3878 Terminology for Composite Materials E4 Practices for Force Verification of Testing Machines E6 Terminology Relating to Methods of Mechanical Testing E83 Practice for Verification and Classification of Extensometer Systems E139 Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials E220 Test Method for Calibration of Thermocouples By Comparison Techniques E230 Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples E337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures) E1012 Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application Keywords ceramic matrix composite; CFCC; continuous fiber ceramic composite; creep rupture; creep test; elevated temperature; Ceramic composites; Composites; Continuous fiber-reinforced ceramic composites (CFCC); Creep; Creep rupture; Elevated temperature tests; Fiber-reinforced composites; Tensile loading; ICS Code ICS Number Code 19.060 (Mechanical testing); 81.060.99 (Other standards related to ceramics); 81.060.30 (Advanced ceramics) DOI: 10.1520/C1337-10 ASTM International is a member of CrossRef. ASTM C1337The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|