FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C1274 2012ASTM C1274 - 12Standard Test Method for Advanced Ceramic Specific Surface Area by Physical AdsorptionActive Standard ASTM C1274 | Developed by Subcommittee: C28.03 Book of Standards Volume: 15.01 ASTM C1274Significance and Use 5.1 Advanced ceramic powders and porous ceramic bodies often have a very fine particulate morphology and structure that are marked by high surface-to-volume (S-V) ratios. These ceramics with high S-V ratios commonly exhibit enhanced chemical reactivity and lower sintering temperatures. Results of many intermediate and final ceramic processing steps are controlled by, or related to, the specific surface area of the advanced ceramic. The functionality of ceramic adsorbents, separation filters and membranes, catalysts, chromatographic carriers, coatings, and pigments often depends on the amount and distribution of the porosity and its resulting effect on the specific surface area. 5.2 This test method determines the specific surface area of advanced ceramic powders and porous bodies. Both suppliers and users of advanced ceramics can use knowledge of the surface area of these ceramics for material development and comparison, product characterization, design data, quality control, and engineering/ production specifications. 1. Scope 1.1 This test method covers the determination of the surface area of advanced ceramic materials (in a solid form) based on multilayer physisorption of gas in accordance with the method of Brunauer, Emmett, and Teller (BET) ( 1 ) 2 and based on IUPAC Recommendations (1984 and 1994) ( 2 ) and ( 3 ) . This test method specifies general procedures that are applicable to many commercial physical adsorption instruments. This test method provides specific sample outgassing procedures for selected common ceramic materials, including: amorphous and crystalline silicas, TiO 2 , kaolin, silicon nitride, silicon carbide, zirconium oxide, etc. The multipoint BET ( 1 ) equation along with the single point approximation of the BET equation are the basis for all calculations. This test method is appropriate for measuring surface areas of advanced ceramic powders down to at least 0.05 m 2 (if in addition to nitrogen, krypton at 77.35 K is utilized as an adsorptive). 1.2 This test method does not include all existing procedures appropriate for outgassing of advanced ceramic materials. However, it provides a comprehensive summary of procedures recommended in the literature for selected types of ceramic materials. The investigator shall determine the appropriateness of listed procedures. 1.3 The values stated in SI units are to be regarded as standard. State all numerical values in terms of SI units unless specific instrumentation software reports surface area using alternate units. In this case, provide both reported and equivalent SI units in the final written report. It is commonly accepted and customary (in physical adsorption and related fields) to report the (specific) surface area of solids as m 2 /g, and, as a convention, many instruments (as well as certificates of reference materials) report surface area as m 2 g -1 , instead of using SI units (m 2 kg -1 ). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D1993 Test Method for Precipitated Silica-Surface Area by Multipoint BET Nitrogen Adsorption E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods ISO Standards Keywords advanced ceramics; BET surface area; ceramics; krypton adsorption; multipoint surface area; nitrogen adsorption; outgassing; physical adsorption; single point surface area; specific surface area; surface area; ICS Code ICS Number Code 81.060.99 (Other standards related to ceramics) DOI: 10.1520/C1274-12 ASTM International is a member of CrossRef. ASTM C1274The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|