Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1239-13(2024)e1 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics
    Edition: 2024
    $94.85
    Unlimited Users per year

Description of ASTM-C1239 2024

ASTM C1239-13-e1-Reapproved2024

Active Standard: Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics




ASTM C1239

Scope

1.1 This practice covers the evaluation and reporting of uniaxial strength data and the estimation of Weibull probability distribution parameters for advanced ceramics that fail in a brittle fashion (see Fig. 1). The estimated Weibull distribution parameters are used for statistical comparison of the relative quality of two or more test data sets and for the prediction of the probability of failure (or, alternatively, the fracture strength) for a structure of interest. In addition, this practice encourages the integration of mechanical property data and fractographic analysis.

1.2 The failure strength of advanced ceramics is treated as a continuous random variable determined by the flaw population. Typically, a number of test specimens with well-defined geometry are failed under isothermal, well-defined displacement and/or force-application conditions. The force at which each test specimen fails is recorded. The resulting failure stress data are used to obtain Weibull parameter estimates associated with the underlying flaw population distribution.

1.3 This practice is restricted to the assumption that the distribution underlying the failure strengths is the two-parameter Weibull distribution with size scaling. Furthermore, this practice is restricted to test specimens (tensile, flexural, pressurized ring, etc.) that are primarily subjected to uniaxial stress states. The practice also assumes that the flaw population is stable with time and that no slow crack growth is occurring.

1.4 The practice outlines methods to correct for bias errors in the estimated Weibull parameters and to calculate confidence bounds on those estimates from data sets where all failures originate from a single flaw population (that is, a single failure mode). In samples where failures originate from multiple independent flaw populations (for example, competing failure modes), the methods outlined in Section 9 for bias correction and confidence bounds are not applicable.

1.5 This practice includes the following:

 

Section

Scope

1

Referenced Documents

2

Terminology

3

Summary of Practice

4

Significance and Use

5

Interferences

6

Outlying Observations

7

Maximum Likelihood Parameter Estimators for Competing Flaw Distributions

8

Unbiasing Factors and Confidence Bounds

9

Fractography

10

Examples

11

Keywords

12

Computer Algorithm MAXL

Appendix X1

Test Specimens with Unidentified Fracture Origins

Appendix X2

1.6 The values stated in SI units are to be regarded as the standard per IEEE/ASTM SI 10.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

advanced ceramics; censored data; confidence bounds; fractography; fracture origin; maximum likelihood; strength; unbiasing factors; Weibull characteristic strength; Weibull modulus; Weibull scale parameter; Weibull statistics;


ICS Code

ICS Number Code 81.060.99 (Other standards related to ceramics)


DOI: 10.1520/C1239-13R24E01

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X