Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1155-95(2013) Standard Practice for Determining Thermal Resistance of Building Envelope Components from the In-Situ Data
    Edition: 2013
    $103.58
    Unlimited Users per year

Description of ASTM-C1155 2013

ASTM C1155-95-Reapproved2013

Historical Standard: Standard Practice for Determining Thermal Resistance of Building Envelope Components from the In-Situ Data




ASTM C1155

Scope

1.1 This practice covers how to obtain and use data from in-situ measurement of temperatures and heat fluxes on building envelopes to compute thermal resistance. Thermal resistance is defined in Terminology C168 in terms of steady-state conditions only. This practice provides an estimate of that value for the range of temperatures encountered during the measurement of temperatures and heat flux.

1.2 This practice presents two specific techniques, the summation technique and the sum of least squares technique, and permits the use of other techniques that have been properly validated. This practice provides a means for estimating the mean temperature of the building component for estimating the dependence of measured R-value on temperature for the summation technique. The sum of least squares technique produces a calculation of thermal resistance which is a function of mean temperature.

1.3 Each thermal resistance calculation applies to a subsection of the building envelope component that was instrumented. Each calculation applies to temperature conditions similar to those of the measurement. The calculation of thermal resistance from in-situ data represents in-service conditions. However, field measurements of temperature and heat flux may not achieve the accuracy obtainable in laboratory apparatuses.

1.4 This practice permits calculation of thermal resistance on portions of a building envelope that have been properly instrumented with temperature and heat flux sensing instruments. The size of sensors and construction of the building component determine how many sensors shall be used and where they should be placed. Because of the variety of possible construction types, sensor placement and subsequent data analysis require the demonstrated good judgement of the user.

1.5 Each calculation pertains only to a defined subsection of the building envelope. Combining results from different subsections to characterize overall thermal resistance is beyond the scope of this practice.

1.6 This practice sets criteria for the data-collection techniques necessary for the calculation of thermal properties (see Note 1). Any valid technique may provide the data for this practice, but the results of this practice shall not be considered to be from an ASTM standard, unless the instrumentation technique itself is an ASTM standard.

Note 1—Currently only Practice C1046 can provide the data for this practice. It also offers guidance on how to place sensors in a manner representative of more than just the instrumented portions of the building components.

1.7 This practice pertains to light-through medium-weight construction as defined by example in 5.8. The calculations apply to the range of indoor and outdoor temperatures observed.

1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

calculation; heat flow; heat flux transducers; HFT; in-situ; mean temperature; measurement; thermal resistance


ICS Code

ICS Number Code 91.120.10 (Thermal insulation of buildings)


DOI: 10.1520/C1155-95R13

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,812.65 Buy
VAR
ASTM
[+] $1,369.19 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X