FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-A923 2023ASTM A923-23Active Standard: Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless SteelsASTM A923Scope 1.1 The purpose of these test methods is to allow detection of the presence of intermetallic phases in certain duplex stainless steels as listed in Table 1, Table 2, and Table 3 to the extent that toughness or corrosion resistance is affected significantly. These test methods will not necessarily detect losses of toughness or corrosion resistance attributable to other causes. Similar test methods for other duplex stainless steels are described in Test Method A1084, but the procedures described in this standard differ significantly from Test Methods A, B, and C in A1084. 1.2 Duplex (austenitic-ferritic) stainless steels are susceptible to the formation of intermetallic compounds during exposures in the temperature range from approximately 600 to 1750 °F (320 to 955 °C). The speed of these precipitation reactions is a function of composition and thermal or thermomechanical history of each individual piece. The presence of these phases is detrimental to toughness and corrosion resistance. 1.3 Correct heat treatment of duplex stainless steels can eliminate these detrimental phases. Rapid cooling of the product provides the maximum resistance to formation of detrimental phases by subsequent thermal exposures. 1.4 Compliance with the chemical and mechanical requirements for the applicable product specification does not necessarily indicate the absence of detrimental phases in the product. 1.5 These test methods include the following: 1.5.1 Test Method A—Sodium Hydroxide Etch Test for Classification of Etch Structures of Duplex Stainless Steels (Sections 3 – 7). 1.5.2 Test Method B—Charpy Impact Test for Classification of Structures of Duplex Stainless Steels (Sections 8 – 13). 1.5.3 Test Method C—Ferric Chloride Corrosion Test for Classification of Structures of Duplex Stainless Steels (Sections 14 – 20). 1.6 The presence of detrimental intermetallic phases is readily detected in all three tests, provided that a sample of appropriate location and orientation is selected. Because the occurrence of intermetallic phases is a function of temperature and cooling rate, it is essential that the tests be applied to the region of the material experiencing the conditions most likely to promote the formation of an intermetallic phase. In the case of common heat treatment, this region will be that which cooled most slowly. Except for rapidly cooled material, it may be necessary to sample from a location determined to be the most slowly cooled for the material piece to be characterized. 1.7 The tests do not determine the precise nature of the detrimental phase but rather the presence or absence of an intermetallic phase to the extent that it is detrimental to the toughness and corrosion resistance of the material. 1.8 Examples of the correlation of thermal exposures, the occurrence of intermetallic phases, and the degradation of toughness and corrosion resistance are given in Appendix X1 and Appendix X2. 1.9 The values stated in either inch-pound or SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords duplex; intermetallic; stainless steels; ICS Code ICS Number Code 77.040.99 (Other methods of testing metals) DOI: 10.1520/A0923-23 The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|