Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(617)
(599)
(55)
(234)
(1006)
(696)
(2183)
(117)
(95207)
(63)
(575)
(124)
(33)
(21)
(20)
(95735)
(17)
(1)
(374)
(324)
(7050)
(241)
(21)
(6)
(1667)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASME
    ASME VVUQ 20.1-2024 Multivariate Metric for Validation
    Edition: 2024
    $79.56
    Unlimited Users per year

Content Description

ASME VVUQ 20.1, Multivariate Metric for Validation, presents a technique that builds on the pointwise technique of ASME V&V 20 to make a global assessment of the discrepancies between multiple validation variables obtained from experiments and simulations. The metric can be applied to the same validation variable at different locations in space and/or at different time instants, or to different validation variables at the same location and time instant, or even to a combination of both. Furthermore, the multivariate metric can work with experimental, numerical, and inputparameter uncertainties that are independent or shared by the multiple validation set points.
X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100