Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(621)
(599)
(55)
(234)
(1006)
(696)
(2183)
(117)
(95207)
(63)
(584)
(124)
(33)
(21)
(20)
(96195)
(17)
(1)
(374)
(325)
(7076)
(241)
(21)
(6)
(1667)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All

Content Description

Concrete That Cleans Itself and the Environment, 2024
CEU: 0.1 | CEU Code: LH-EN-125503-1224

Concrete is the most widely used construction material in the world, second only to water. Over time, as a result of the build-up of atmospheric compounds in the surrounding environment, concrete will become discolored, stained, dirty, and dingy. This course examines photocatalytic technology which accelerates self-cleaning and fights air pollution while maintaining the mechanical and physical properties of traditional concrete.

Learning Objectives

  • Review the history of photocatalytic technology and evaluate how applying it in concrete can improve the sustainability and performance of a building.
  • Explain how photocatalytic cement speeds up the natural, self-cleaning oxidation process of concrete, thus preventing the accumulation of atmospheric compounds on its surface, reducing discoloration and preserving aesthetics.
  • Convey how photocatalytic technology abates air pollution, thereby reducing smog and decreasing atmospheric elements which damage the air we breathe, and in doing so, improving human health and that of the environment.
  • Recognize how photocatalytic cement products contribute to a sustainable built environment through reduction of the heat island effect, improving energy performance and durability.
  • Determine the factors that influence performance, review independent laboratory and field verification trials, and assess specific case studies and the cost value factors associated with the technology.

Faculty BIO

Since 2000, Jay Whitt has served as a technical service engineer in the cement and concrete industry. His experience is centered on bringing value to the company and customers along with directing product research and development. Jay's role includes providing technical support for all Essroc products from four cement manufacturing plants, directing and managing the regional concrete and masonry testing laboratory, and managing an innovative portfolio including research, lab testing, and customer implementation. He also offers support for Slag Cement production testing and technical sales and is trained to test and provide on-site customer validation of photocatalytic cement.


X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100