Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(573)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(541)
(117)
(33)
(21)
(20)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(240)
(16)
(5)
(1635)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • BSI
    BS ISO 22309:2011 Microbeam analysis. Quantitative analysis using energy-dispersive spectrometry (EDS) for elements with an atomic number of 11 (Na) or above
    Edition: 2011
    $418.55
    / user per year

Description of BS ISO 22309:2011 2011

This International Standard gives guidance on the quantitative analysis at specific points or areas of a specimen using energy-dispersive spectrometry (EDS) fitted to a scanning electron microscope (SEM) or an electron probe microanalyser (EPMA); any expression of amount, i.e. in terms of percent (mass fraction), as large/small or major/minor amounts is deemed to be quantitative. The correct identification of all elements present in the specimen is a necessary part of quantitative analysis and is therefore considered in this International Standard. This International Standard provides guidance on the various approaches and is applicable to routine quantitative analysis of mass fractions down to 1 %, utilizing either reference materials or “standardless” procedures. It can be used with confidence for elements with atomic number Z < 10.

Guidance on the analysis of light elements with Z < 11 is also given.

NOTE With care, mass fractions as low as 0,1 % are measurable when there is no peak overlap and the relevant characteristic line is strongly excited. This International Standard applies principally to quantitative analyses on a flat polished specimen surface. The basic procedures are also applicable to the analysis of specimens that do not have a polished surface but additional uncertainty components will be introduced.

There is no accepted method for accurate quantitative EDS analysis of light elements. However, several EDS methods do exist. These are the following:

  1. Measuring peak areas and comparing intensities in the same way as for heavier elements. For the reasons explained in Annex D, the uncertainty and inaccuracy associated with the results for light elements will be greater than for the heavier elements.

  2. Where the light element is known to be combined stoichiometrically with heavier elements (Z < 10) in the specimen, its concentration can be determined by summing the appropriate proportions of concentrations of the other elements. This is often used for the analysis of oxygen in silicate mineral specimens.

  3. Calculation of concentration by difference where the light element percentage is 100 % minus the percentage sum of the analysed elements. This method is only possible with good beam-current stability and a separate measurement of at least one reference specimen and it requires very accurate analysis of the other elements in the specimen.

Annex D summarizes the problems of light element analysis, additional to those that exist for quantitative analysis of the heavier elements. If both EDS and wavelength spectrometry (WDS) are available, then WDS can be used to overcome the problems of peak overlap that occur with EDS at low energies. However, many of the other issues are common to both techniques.



About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X